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Abstract
This paper presents a mechanism to perform constant

time content based search in an image archive with sample
image. The technique described in this work is targeted to
perform search in medical image archive where is particu-
larly difficult to retrieve image based on symbolic descrip-
tion of shapes. Unlike conventional associative memories,
this new model can perform search on
the basis of scene objects or features present in the sample
image. The system is based on a new associative memory
model, which incorporates not only the pixel intensity
information but also additional meta-knowledge about the
pixel information.

1. Introduction
Content based associative search is expected be one of

the critical component of intelligent image archival systems.
Because, in contrast to conventional symbolic information,
image information is low level, sparse and distributed and
requires complex abstraction. Therefore, it is difficult to
organize image information in the form of condensed key
concepts (key words) and to support traditional relational
search.

During the last three decades, extensive research in
artificial neural networks has resulted in a number of arti-
ficial associative memory (AAM) models that support
content based search mechanism, such as cross-bar
associative memory, bi-directional associative memory
(BAM), back propagation, ART [1,2,3], etc. These pio-
neering models have been successful to demonstrate the
feasibility of time efficient (constant time) content based
search in a highly distributed manner.

The general associative search is a complex cognitive
phenomenon. These artificial models are nevertheless
primitive in comparison. However, in this paper, we will
address a very specific shortcoming of the existing artificial
models. One of the key characteristics of cognitive matching
process is that, apparently, we can focus on any specific
feature or part of a scene, and consciously ignore some other,
and use only the relevant part in the final matching. These
critical index features are not necessarily statistically
important compared to the physical dimension of the image.

More importantly, we can dynamically shift the distribution
of such cognitive importance during recollection. One of the
critical shortcoming of the existing AAM models are their
inability to support such flexibility during query.

Almost all of the current AAM networks are founded on
the basic Mculloch and Pitts like cell [2,4], where, synoptic
wights are learned during training, and remain static during
recollection. As a consequence, the basic activation process
during recollection treats all the input elements of informa-
tion with unalterable weightage. The robustness of such
network depends on the numerical balance between the
"correct" versus "incorrect" part of total information. This
results in a pre-weighted statistical element-to-element
matching. There is no mechanism to regulate (or switch
on/off) any input during query (even if we know that these
are unreliable and will contribute error). As, a direct con-
sequence, almost all of the existing artificial associative
networks do not provide any mechanism to support
dynamically shifting focus in the input frame.

Dynamically shifting focus in specifically relevant in
visual query inside image archive. A single image supplied
as a sample during search can be interpreted in numerous
ways by the searcher. Each interpretation may result in
different answers. Most of the AAM models converge only
to the statistically closest match, without adjusting to the
interpretation intended by the searcher. Few like ART [1]
can provide multiple answers. However, the answers are
ordered according to pure statistical closeness, but have no
relevance to the cognitive focus.

In this paper, we present an associative search mecha-
nism, which can overcome the above critical limitation of
the existing AAMs. This associative memory with focus is
based on a new notion of information. Unlike any artificial
neural network, we consider each element of information as
a bi-modal pair, which has (i) content and (ii) meta-weight
components. As we will demonstrate, the resulting model
can support dynamically shifting view-points (or interpre-
tations) during query and still associatively retrieve appro-
priate frames from archive in constant time.

1 The author is also with the computer science and engineering department at Bangladesh University of Engineering and Technology (BUET).



In the following section we first briefly present the
computing paradigm on which the search mechanism is
based. In section 3 we present an architecture of a prototype
image archive, which allows content based search on the
basis of various objects from in the sample image. Section
4 finally presents few example and performance result from
an implemented prototype archive.

2. Holographic associative memory

2.1 Information Representation
A stimulus pattern is a suit of elements .

Unlike conventional AAM, which express and processed
each of these pieces as a scalar valued real number, we
include the meta-knowledge about each of its pieces as part
of the basic notion of information. Thus, each piece of
information is modelled as a bi-modal pair.

Where, ’s make a set of basic information elements and
represents the meta-knowledge associated with this set.

Multidimensional complex numbers are used as operational
representation to map the bi-modal information. Each is
mapped onto a phase element in the range of
through a suitable transformation, and becomes its mag-
nitude.

Where,each is a d-dimensional vector.

Each of the is the spherical projection (or phase compo-
nent) of the vector along the dimension . Thus, a stimulus
and a response are represented as:

2.2 Encoding
In the encoding process, the association between each

individualstimulus and itscorresponding response is defined
in the form of a correlation matrix by the inner product of
the conjugate transpose of the stimulus and the response
vectors. If the stimulus is a pattern with n elements and the
response is a pattern with m elements, then is a
matrix with d-dimensional complex elements.

The associations derived from a set of stimuli and a set
of corresponding responses are superimposed on a super
matrix X of same dimension referred as Holograph.

2.3 Retrieval

During recall, an excitory stimulus pattern is
obtained from the query pattern:

The decoding operation is performed by computing the
inner product of the excitory stimulus and the correlation
matrix X:

The proof of basic associative memeory characterstics
of this model explaining how (1), (2), and (3) tagather can
correctly retrieve original stored response despite superim-
position of the associations in (2) is explained in [5,6].

2.4 Focus capability

Now, we show the unique characteristics of this model,
which allows the complete reconstruction of the response
pattern from a dynamically variable (during query) small
(less than 30%) segment of any stimulus.

By combining, the encoding and decoding operations
expressed in (1) and (2), the retrieved association can be
decomposed into principal and cross-talk components.

Where, is considered the candidate match. From (4) it
can be deduced that if, the excitory stimulus , bears
similarity to any priory encoded stimulus , in their -suit
then the principal component of generated response
resembles its corresponding response pattern .

The cross talk component behaves as a summation of
randomly oriented vectors. Up to an acceptable number of
associations (P), this remains well below unity, and thus, the
net response closely follows the principal-component.

Let us consider the retrieval of the jth component of the
response (the retrieval of its other components are also
identical and independent). We consider only the principal
component. For the sake of notational simplicity we also
assume d=2.
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Equation(5) shows that each of the elements in the query
stimulus ( ) tries to cancel the phase component of the
corresponding encoded stimulus element ( ) by forcing

. Thus, each tries to reconstruct the associated
on its own. The accuracy of each reconstruction depends on
the closeness of these two elements. It is possible to visualize
that the resultant response is a weighted average of the
reconstructions done by all these individual query stimulus
elements, where the weight terms are . This, mathematical
construction of MHAC plays the key role in selective focus.
By appropriately choosing the values, it is possible to
dynamically set the importance of each query stimulus
component without effecting the independent reconstruction
efforts by the others. By setting it is possible to
completely shut off the kth stimulus element. If we have
meta-knowledge that the kth element is incorrect, then we can
effectively block it from contributing errors in the weighted
sum.

Almost all of the conventional artificial neural networks
use the classical scalar product rule of synoptic efficacy,
where the reconstruction is performed as a linear weighted
sum. Where, weights are fixed during learning. Therefore,
each piece of stimulus element becomes essential in the
overall reconstruction. In contrast, the proposed vector
product rule of synoptic efficacy is a form of weighted
average. Thus, each term is not essential to the overall
reconstruction. This critical distinction allows MHAC to
dynamically adjust focus depending on the input condition.

2.5 Focus characteristics
In this section we show the signal-to-noise ratio in the

retrieved response which is defined as:

From (4), it can be derived:

Where, , is the cross difference

between the elements in lth and kth positions of the stored and
query stimulus patterns. Let us define a distance measure
between two patterns d such that, -suit elements of the
stimulus and are bounded by the distance d over the
entire set, such that

.

For close match, ( ):

Where,

w intuitively refers to the ’porosity’ of the window frame
or the overall focus ( ) density strength.

3. System design
In this section we will present a content based search

mechanism into image database. Fig-1 presents the archi-
tecture of the system. The system can be decomposed into
three major sub-systems, namely (a) image archive (IA), (b)
holographic encoding and (c) dynamic indexed query.

The actual image archive is independent from the query
mechanism. Generally, images are compressed (lossy or
lossless) before storage. The query mechanism does not
interfere with this storage sub-system. We will describe the
later two subsystems in details.
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Fig-1 System Architecture

3.1 Encoding subsystem
Each of the stored image is first associated with one

unique response label pattern (RLP).RLPs serves as an
internal index for the archive sub-system. RLPs are gener-
ated using reverse Grey code to ensure maximum inter-
distance between them.

First, the auto-adaptive segmenter unit (ASU), segments
the image into an analog set of subimages. Each pixel has a
net belonging value of 1. Pixels are allowed to be the member
of more than one sets, provided the conservation of net
belongingness. The belongingness values generated a
membership mask (MM) for each of the subimages.

The objective of auto-adaptive segmenter is to guess the
segmentation patterns that may be generated during dynamic
query as closely as possible, however, without any human
intervention. Each of the segmented sub-images can be
considered as external indices to the image. A multi-median
threshold based algorithm is used to perform this segmen-
tation. Each of these subimages is then transformed into a
sub-image stimulus pattern(SSP). The phases of complex
stimulus elements are generated from the pixel color values,
and themagnitudevaluesare generatedfrom the membership
mask MM. Each SSP is then associated with the assigned
RLP of corresponding image. For each association, the
encoder unit encodes the difference between the generated
response and expected response by eq (1). Holographic
abstract stores all the associations.

3.2 Decoding subsystem

In this sub-system, the example image is supplied by the
human user. With dynamic indexing tool-set, the searcher
creates a view-pointmask (VM) in theexample image. Given
the view-point mask (VM), and the example image, the
subsystem generates the query stimulus. The decoder unit
uses this stimulus to search into its collection of holographic
abstracts and generates a response label (RLP). The com-
putation follows (3). The computation time is of and
thus independent of the number of stored patterns.

This raw RLP is passed through a noise supressor unit
(NSU) to generate a RLP from the stored RLP set. The noise
supressor measures the distance of the generated response
from the stored RLPs. Each RLP element is a complex
number. The stored RLPs are generally assigneda magnitude
of 1. On the other hand, the generated RLP magnitude
provides a measure of confidence of the system on the
accuracyof thegenerated element. Noisesuppresor performs
an output confidence weighted matching to converge to the
closest stored RLP. This RLP is then passed to the archive
sub-system to retrieve the actual image.

4. Experiment result

Below we show the performance of a prototype system
implemented on a Silicon Graphics Onyx platform. A set of
20 240x120 color images was abstracted into a holograph.
Fig-2 shows the training characteristics of the encoder. It
took only about 50 iterations to converge.

To illustrate the focus characteristics, we show how the
network can perform the retrieval when some objects on the
query template are indicated to the system as of principal
focus. Fig-3 shows an example of a typical sample image.
Fig-4 shows three possible view points of matching. These
are few of the possible dynamic indices in this query image.
Pan-A focuses on the DOG-SIMBA. Pan-B focuses on the
FRED-ON-CAR, and Pan-C focuses on the NINJA. The
sample image was not present in the holograph. However,
during decoding, Fig-5(a),(b) and (c) were respectively
pulled out by the system from the holographic memory as
closest. As evident, although none of these stored pictures
have statistical similarity with the query image, but each
match closely on the basis of respective cognitive objects.
Table-1 lists thecorresponding performancesof some typical
queries. The 2nd column in each table shows the density of
the focus window (w) of each of the used object feature. As
evident, the typical features or objects, which are used by
humans as indices quite often fall below 10-20% of the total
image. The performance of most conventional network
sharply decreases when it falls below 50% of the frame
because of flat statistical matching[7].

Stimulus Decoder
Response
index

CB Generator Code Book

Compressor

Encoder

Holograph
Status
Board

Decompressor

Holographic Abstracts

Content Search Image DataBase

Dynamic Indices
Intensity
Shape
Object
Edge
Texture
etc.

Dynamic Indexing Tool Set

O(mn)



Object Density SNR (db) Correct
Match

A-PATCH-OF-BKGRD .108 9.73 1st (A1)

POND .208 24.37 1st (A1)

DOG-SIMBA .193 19.10 1st (A4)

NINJA .144 16.93 1st (A6)

FRED-ON-CAR .039 16.43 1st (A5)

A-PATCH-OF-JUNGLE .09 10.65 1st (A7)

Table-1 Object based query

5. Conclusion
Here we have presented the result of a small system with

20 images. However, the capacity of this network is very
encouraging. Given reasonable symmetry in the distribution
of the color values, virtually 1000/2000 images can be
abstracted into a single holograph. In fact, it is possible to
show that virtually unlimited number of patterns can be
stored by higher order encoding.

A separate but related problem is the automatic detection
of the focus field. Currently, we are investigating an inter-
active semi-automatic focus detection mechanism on the
basis of lambda reflex provided by each search. The same

reflex can also be used to perform transation, scale and
rotation varying search. Finally, the authors would like to
thank Mr. Yu Jun for helping with the SGI system.
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Fig−4 Object focus fields Fig−5(a) Retrived from Pan−A

Fig−5(b) Retrieved from Pan−B Fig−5(c) Retrieved from Pan−C
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