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ABSTRACT 
TCP friendliness is considered as an important concept in 
networked based application design. However, a particular 
problem with current networked systems is that it becomes very 
difficult to device TCP friendly solutions as the fixed part of the 
network layer itself has been designed as a closed box. We 
investigate an approach in which required service state 
information can be pulled-up to the upper layer where various 
custom friendly ‘actions’ can be performed by programmable 
application components, and the generated ‘actions’ are pushed 
down into the network layer via application network 
interactivity. This approach enables design of a new set of 
network interactive TCP friendly systems. We call this 
mechanism ‘Transparent Networking’. In this paper, we explain 
the transparency service model and show by example how it can 
be used to model two well-known protocols proposed in the 
literature to improve TCP performance over wireless networks: 
Snoop [2] and WTCP [10].  
 
Keywords: transparent networking, transparency service 
model, TCP interactive, TCP friendliness. 
 

1. INTRODUCTION 
Traditional network software stack has been designed with a 
layered (or more accurately pseudo-layered) organization. Each 
layer is intended to offer a specific service to the overall task of 
information communication between the application end-points. 
Each service has a specific implementation somewhere inside 
these layers. This organization used to be a blessing but no 
longer! These layers, the organization of the services and their 
specific implementations now turns out to be quite rigid and 
frustratingly immutable. As the diversity and the sophistication 
of applications have grown over the decade, this fixed and 
layered approach of network software organization is facing two 
levels of difficulties. In the first level, better 
solutions/implementations have been found for many of the 
services. A classical example is TCP’s timer management and 
congestion control. Historically increasingly improved 
techniques have been found several times- and the process may 
continue each time speed differential increases in physical 
technology [4, 12]. This can be considered as the 
implementation’s ‘evolution’ problem.  For example currently it 
is very difficult to build a jitter or delay managed transport 
service- though it appears as quite main stream for many 
applications. At a second level, problem also arises when 
selective applications critically require specialized service, 
while that very service can be undesirable to other applications. 
TCP’s retransmission based implementation of reliability is one 
such classic case. Though, it is conceptually possible to 

implement reliability in other ways (such as FEC), the choice of 
this particular mechanism has been found to be severely 
detrimental for time-sensitive elastic traffic (such as streaming 
audio, video) [5]. This second level problem can be considered 
as the implementations’ ‘conflict’ problem.  
The transparent networking approach–which we will explain 
shortly—might be able to solve both problems with moderate 
effort. In this approach, instead of embedding codes within deep 
network layers, we propose creating mechanisms only to pull up 
the required service state information in the upper layers. And 
then the actual action can be formulated by the programmable 
components running in the upper layers- even at the application 
layer and then to create handles so that the generated actions 
again can be pushed down below in the network layer. This 
relives the lower network layers from housing costly custom 
components- and to readdress complex issues regarding security 
and resource sharing. The attraction is that the application space 
already has a very well developed provision to run custom 
codes, share resources, and handle security issues for managing 
multiple trust domains, etc. Much of that can be reused. 
Each communication service software component within a 
transparent network framework can easily be interactive –and 
thus can tell each other about their dynamic states. As we will 
show this transparent networking framework is also quite 
lightweight. With this design principle we have recently 
implemented a transparent FreeBSD. As an instance we have 
also implemented an interactive version of an otherwise legacy 
protocol TCP. We call it TCP Interactive (iTCP).  Previously 
researchers have proposed smart solutions to several of the 
known network problems which required custom modification 
within network software layers. However, despite their 
functional advantages- each of these creative solutions faced 
deadly deployment problem because these required highly 
individualized changes within the network layers- which was 
never realized. We now demonstrate how few such instances 
based on TCP derivatives can be easily implemented at the 
application level and operated on demand within this new 
paradigm of transparent networking. These are the Snoop 
protocol proposed by Balakrishnan et al. [2], and the WTCP 
proposed by Sinha et al. [10].  
Besides enabling application layer implementation path of 
custom network solutions, the proposed protocol transparency 
also offers a second type of benefit of no lesser implication. 
Transport friendliness has been preached for applications for 
quite some time by network researchers. Unfortunately the 
problem has much to do with the classical implementations of 
network protocols which themselves are not interactive or open 
to applications. It is very difficult for applications to be friendly 
with its non-friendly counterpart. In this context, the proposed 
encouragement in protocol interactivity can make way for a new 
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generation of transport friendly applications and usher 
dramatically efficient solutions to currently notorious problems 
arising from network unawareness or ignorance. A good survey 
on TCP friendly protocols can be found in [12]. 
The paper is organized as follows: in section 2 we present the 
general framework of our transparency service model and iTCP. 
In section 3 we show how the interactive scheme can be used to 
model two well-known protocols proposed in the literature to 
handle traffic on wireless networks. In section 4 we discuss 
performance and security issues and we conclude in section 5. 

 
2. TRANSPARENT NETWORKING SERVICE 

MODEL 
In the logical sense, we envision every network layer as a 
service provider for the layer above it, and as a service user of 
the layer below it. For example, TCP layer provides its services 
to the socket layer above and uses the services of the IP layer 
below. In the interactive model, adjacent layers interact through 
a well-defined, clean interface. The interface supports four 
distinctive operations: (a) subscribe, (b) signal, (c) probe, and 
(d) modify. 
An upper layer subscribes to target events in the layers below. 
Typically, a subscriber layer should be interested in certain 
events that might occur in the target layer, and by subscribing to 
events, the subscriber wishes to be notified when any one of the 
events has occurred. In real practice however, only a subset of 
the target layer events are subscribable. The transparency 
service is obliged to fulfill the subscriber wishes as far as it 
abides to the security restrictions and access privileges imposed 
by the super user.  
In the next section we demonstrate the four operations of the 
transparency service by a general scenario. 
 
A General Transparency Methodology 
In the general framework, a Central Handler (CH) serves all 
signals from all layers. It maintains a list of all subscription 
instances for all subscribers and serves all probing and 
modification requests. Figure-1 demonstrates the service model 
through a simple case scenario where layer L wishes to 
subscribe for event e in layer Q below. Notice that layers L and 
Q are separated by layer P to emphasize that subscriber and 
target layers are not necessarily direct neighbors. L makes a 
Subscribe call (1) that includes: Subscriber L, Target Q, 
subscribed event e, and the Transientware (T-ware) module T. 
By making this call, layer L is basically telling CH: Whenever 
event e happens in layer Q, please activate module T. Since CH 
maintains subscription information of all subscribers, it adds 
this subscription to its database. Next, CH forwards the 
subscription request to the target layer Q (2). Also, Q adds a 
subscription instance for (Layer L/Event e) to its internal state. 
When event e happens, a signal is sent to the CH (3) which in 
turn probes Q (4) to get the event information. When it receives 
the event information, CH searches its database for the 
appropriate T-ware module that matches the instance (L, Q, e) 
and invokes it (5). Once invoked, the T-ware module can access 
relevant parts of the internal state of layer Q and possibly make 
changes to it as specified by the protocol being implemented. 
The T-ware module can use the probe or modify operations (6) 
to access/update the internal state of Q in accordance with its 
access privileges.  

 
iTCP 

In the past few years, we have been developing iTCP, a real 
interactive transport protocol based on the transparency service 
model. We let TCP track congestion control related events like 
‘retransmission timer time out’ event and ‘third duplicate ACK’ 
event. Actually, both events signify packet loss and cause TCP 
to trigger a congestion control procedure. We extended the 
standard socket API with subscription and probing system calls 
to enable demanding applications to use the transparency 
service.   
Figure-2 depicts the basic architecture of iTCP. Upon opening 
the socket, an adaptive application may bind a T-ware module 
to a designated TCP event by subscribing with the kernel. The 
binding is optional; if the application chooses not to subscribe, 
the system defaults to the silent mode identical to TCP classic. 
The logical sequence of operations follows the general 
transparency framework described in the previous section and 
proceeds as follows: (1, 2) subscribe, (3a, 3b) send a signal, (4a, 
4b) probe kernel for event type, (5) invoke appropriate T-ware 
module to serve the event, (6a, 6b) probe/modify internal state, 
and (7) means that a T-ware module can also access or modify 
certain state variables in the user application if necessary.  
We have experimented iTCP with elastic video traffic by 
allowing an adaptive video transcoder [7] to intercept the video 
stream and modify the generation bit rate based on feedback 
signals from iTCP. When the network is congested (a ‘timer 
out’ event has happened) iTCP triggered a T-ware module 
which ordered the transcoder to reduce its generation bit rate. 
When congestion is dissolved, iTCP triggers another T-ware 
module which ordered the transcoder to recover and return to 
normal bit rate. 
The scheme proved to be truly TCP friendly and have shown 
substantial gain in video performance metrics like frame-wise 
end-to-end delay and referential jitter. More information on 
iTCP and related experiments can be found in [5, 8, 6].  
 

3. PROTOCOL MODELING EXAMPLES 
In this section we briefly describe two well-knows 
protocols; Snoop protocol [2] and WTCP protocol [10]. 
They are among many other schemes proposed in the 
literature to improve TCP performance over wireless 
links. Then, we show how they can be modeled with our 
transparent networking scheme through API and 
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signaling extensions. This transparent modeling offers 
two potential benefits; (i) it becomes much easier to 
implement and deploy the proposed protocol on a real 
network, and (ii) new extensions or alternative algorithms 
–as application level T-ware modules—can be 
experimented with the new protocol without changing the 
underlying infrastructure. For example, a protocol like 
WTCP which was intended to improve TCP performance 
over wireless links can also be augmented with extra T-
ware modules to add TCP friendly features.   
 
3.1. TCP Performance over Wireless Networks 
Wireless networks have certain characteristics that are not 
handled properly by regular TCP such as high bit error 
rate (BER) and long disconnections due to handoffs or 
bad reception. When a packet is lost, regular TCP 
assumes that it is due to congestion and will always 
trigger congestion control procedures at the fixed host. 
However, in a wireless environment, radio transmission 
errors or handoffs can also cause packet loss. This will 
result in significant reductions in throughput that can 
severely degrade overall performance. A good survey on 
proposed protocols for improving TCP performance over 
wireless networks can be found in [4, 1, 3]. 
 
3.2 Snoop Protocol 
The Snoop protocol introduced a module, called Snoop, 
at the base station that monitors every packet that passes 
through in both directions. The Snoop module maintains 
a cache of TCP packets sent from the fixed host that have 
not yet been acknowledged by the mobile host. A packet 
loss is detected either by the arrival of duplicate 
acknowledgment or by a local timeout. To implement the 
local timeout, the module employs its own retransmission 
timer. The Snoop module retransmits the lost packet if it 
has it in the cache. Thus, the base station hides the packet 
loss from the fixed host, therefore avoiding its invocation 
of an unnecessary congestion control mechanism. Figure-

3 describers the basic architecture of the Snoop protocol 
and figure-4 shows the interactive version of Snoop. 
The scheme represents part of the snoop protocol that 
handles one direction of the traffic only (Data segments 
from FH to MH and ACK segments from MH to FH). 
The snoop protocol uses a different technique to handle 
traffic on the other direction, but it can be easily modeled 
with the interactive framework in a similar fashion. The 
model shown in figure-4, assumes that data segments are 
cached in the network as in conventional Snoop for 
performance reasons.  
Whenever the Interactive IP layer receives a Data 
Segment from the FH, or an ACK segment from the MH, 
it sends a signal (software interrupt) to the application 
layer. A Signal Handler is immediately invoked to serve 
the signal upon its arrival. Based on the event type (Data 
or ACK received), the Signal Handler invokes the 
appropriate T-ware module either the Data Handler or 
the ACK Handler. 
The Snoop Agent is a process that runs in the application 
layer. Its main role is to initialize and maintain the Snoop 
State, subscribe with the interactive service, and setup the 
Signal Handler. Afterwards, most of the work is done by 
the T-ware modules. The Snoop State is similar to the one 
used in the conventional snoop protocol. The Data 
Handler handles the (Data segment received) event. It 
implements the Data processing algorithm of the snoop 
protocol. The ACK Handler handles the (ACK segment 
received) event. It implements the ACK processing 
algorithm of the snoop protocol. Both algorithm are 
describes in detail in [2]. 
  
Both Data Handler and ACK Handler need to interact 
with the IP layer and to access the Snoop state; they use 
the special interactive API to (i) probe the IP layer and 
Read relevant header parameters from the TCP segment 
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that has just arrived and (ii) to update the cache of TCP 
segments. The Data Handler adds segments to the cache 
and the ACK Handler clears the cache or part of it as 
decided by their respective algorithms. We assume that 
both handlers have full access to the Snoop State; they 
can read and update state variables as necessary. 
3.3 WTCP 
Wireless Transmission Control Protocol (WTCP) is 
specifically designed for wireless wide area networks. 
WTCP is based on the following two key principles: (i) it 
uses rate-based rather than window-based transmission 
control, i.e., it does not use ACKs for self clocking, and 
(ii) it uses the ratio of the inter-packet separation at the 
receiver and the inter-packet separation at the sender as 
the primary metric for rate control rather than using 
packet loss and retransmit timeouts. 
WTCP uses a heuristic based on the average per-packet 
separation to distinguish congestion losses from random 
losses. In this heuristic, the receiver initially predicts that 
all losses are non-congestion losses. The following 
example from the WTCP original paper [10] explains the 
main concept of this heuristic: consider that packets i and 
j were received (i < j), but packets i+1 … j−1 were all 
lost. In this case the receiver computes the average inter-
packet separation for each of the lost packets as:  

ij
recvTimerecvTimeperPktSep ij

−
−

←  

Where recvTimei is the time at which the last bit of 
packet i arrive. If the value of perPktSep is close to the 
measured inter-packet separation at the receiver (i.e. 

within the band [average − K ・mean deviation, average 
+ K ・mean deviation], where K is a constant), then the 
receiver predicts that the losses were all random losses. 
Otherwise, the receiver predicts that there was at least 
one congestion loss, and the sending rate is reduced. 
The basic scenario of the WTCP’s rate-based scheme is 
shown in figure-5. The receiver computes the desired 
sending rate via its rate control mechanisms, and notifies 
this rate to the sender in the ACK packets. ACKs, thus, 
carry both reliability information (SACK) and rate 
control information. The sender monitors the reception of 
ACKs, and adjusts its rate accordingly. It also monitors 
the ACKs to tune the ACKing frequency, which it then 
notifies to the receiver in future data packets.  
In figure-6 we show WTCP modeled with the interactive 
scheme. Here, we moved most of the processing to the 
application layer as T-ware modules, i.e., the rate control 
algorithm on the receiver (MN) and reliability algorithm 
on the sender (FH).  The interactive extension provided 
the necessary API that allows TCP to trap events on both 
ends. On the MN, when a new packet is received, this 
event triggers the (inter-packet time computation) T-ware 
module, which calculates new timers and updates the 
internal state of WTCP. When it is time to perform the 
periodic update, this event triggers the (sender rate 
heuristic) T-ware module to calculate a new rate for the 
sender. The updated rate is transmitted to the sender 
through the API. On the sender side, when an ACK 
packet is received, two T-ware modules are activated, 
since the ACK packet carries both ACK and SACK 
information. The (SACK processing) module discovers 
holes in the transmitted packet sequence, i.e., discovers 
lost packets, and issues retransmission request through 
the API. The (ACK monitoring module) calculates a new 
ACKing frequency rate based on the current transmission 
rate and the internal state and sends the updated rate to 
the receiver periodically. 
The scenario shown in figure-6 assumes that applications 
on both endpoints should subscribe with their respected 
events. We also assume that a signal handler on each end 
manages all signaling and activates T-ware modules.  
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4. Performance Issues 
4.1. Overhead Cost 
The transparency model implementation of both 
protocols adds some extra cost to the original scheme as a 
result of the added signaling and system calls overhead. 
Here, we show an abstract comparison of both interactive 
and conventional schemes of the Snoop protocol. In 
table-1 we show several quantities that define cost 
variables and wireless link characteristics. The first 
column in table-2 shows the estimated cost incurred by 
deploying the Snoop protocol for three scenarios: (1) 
error-free, handoff-free wireless link, (2) error-prone link 
with BER = 1 error for each x Mbytes, and (3) a moving 
mobile node that triggers a handoff every n seconds. The 
second column represents the interactive version of 
Snoop. In the first scenario (a reference case) iSnoop 
added overhead came from Sub, S, H, and Ui - Un.  
Actually, in real practice these added costs should be very 
small (almost negligible). For example Sub, H, and Ui all 
involve running a small system call and OS context 
switch cost (around 10 ns on a 2 GHz machine). Besides 
the reference case, the other two scenarios were identical 
in both protocols. The same kind of analysis holds for the 
WTCP case, but we don’t include it here for space 
limitations. 
 
4.2. Security and Practice 
The added small overhead cost can be justified for many 
practical gains allowed by the interactive model. As we 
mentioned earlier, since T-ware modules run in the 

application space, they will enjoy a well developed 
provision tuned to run custom codes, share resources, and 
handle security issues. Actually, the security issue is of 
great importance in such engagement. Running the 
Active modules inside the network raises many security 
concerns that usually require complex techniques to 
maintain acceptable security level and stability within the 
network domain. Moving these modules up to the 
application layer makes security management a much 
easier task. Actually, Subscriber applications and T-ware 
modules can only access internal network state through 
the API extension. Therefore, by imposing the 
appropriate access restrictions on each party, we can 
guarantee certain security level. Furthermore, since the 
API extensions are implemented as system calls, we can 
simply extend the OS security model and reuse available 
OS facilities like memory management and resource 
sharing to achieve even better performance. These 
characteristics make the transparency model an attractive 
and a practical choice to implement and deploy many 
useful protocols which thus far had been only simulated 
or tested on a small-scale controlled testbed. 
 

4. Conclusion Remarks 
We have particularly chosen two ‘original source’ 
examples for demonstrating an implementation path via 
transparent networking. But this is not to endorse them. 
The purpose is to show that these and many other 
solutions which required modification within network 
layers can be implemented at application layer as well 
with transparent networking. For the above two, please 
note because of their basic usefulness researchers have 
subsequently proposed several improved variants [1, 4]. 
The proposed transparency via interaction and triggered 
T-ware deployment will provide them implementation 
paths as well. In fact, since T-ware modules operate at the 
application layer it will be much easier to switch from 
one to another improved one. 
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