
Published in the Proceedings of the International Conference on Computing, Communications and Control Technologies –
CCCT'04, Austin, TX, USA. August 2004. pp. 66 – 71, Vol. 7

ABSTRACT
TCP friendliness is considered as an important concept in
networked based application design. However, a particular
problem with current networked systems is that it becomes very
difficult to device TCP friendly solutions as the fixed part of the
network layer itself has been designed as a closed box. We
investigate an approach in which required service state
information can be pulled-up to the upper layer where various
custom friendly ‘actions’ can be performed by programmable
application components, and the generated ‘actions’ are pushed
down into the network layer via application network
interactivity. This approach enables design of a new set of
network interactive TCP friendly systems. We call this
mechanism ‘Transparent Networking’. In this paper, we explain
the transparency service model and show by example how it can
be used to model two well-known protocols proposed in the
literature to improve TCP performance over wireless networks:
Snoop [2] and WTCP [10].

Keywords: transparent networking, transparency service
model, TCP interactive, TCP friendliness.

1. INTRODUCTION
Traditional network software stack has been designed with a
layered (or more accurately pseudo-layered) organization. Each
layer is intended to offer a specific service to the overall task of
information communication between the application end-points.
Each service has a specific implementation somewhere inside
these layers. This organization used to be a blessing but no
longer! These layers, the organization of the services and their
specific implementations now turns out to be quite rigid and
frustratingly immutable. As the diversity and the sophistication
of applications have grown over the decade, this fixed and
layered approach of network software organization is facing two
levels of difficulties. In the first level, better
solutions/implementations have been found for many of the
services. A classical example is TCP’s timer management and
congestion control. Historically increasingly improved
techniques have been found several times- and the process may
continue each time speed differential increases in physical
technology [4, 12]. This can be considered as the
implementation’s ‘evolution’ problem. For example currently it
is very difficult to build a jitter or delay managed transport
service- though it appears as quite main stream for many
applications. At a second level, problem also arises when
selective applications critically require specialized service,
while that very service can be undesirable to other applications.
TCP’s retransmission based implementation of reliability is one
such classic case. Though, it is conceptually possible to

implement reliability in other ways (such as FEC), the choice of
this particular mechanism has been found to be severely
detrimental for time-sensitive elastic traffic (such as streaming
audio, video) [5]. This second level problem can be considered
as the implementations’ ‘conflict’ problem.
The transparent networking approach–which we will explain
shortly—might be able to solve both problems with moderate
effort. In this approach, instead of embedding codes within deep
network layers, we propose creating mechanisms only to pull up
the required service state information in the upper layers. And
then the actual action can be formulated by the programmable
components running in the upper layers- even at the application
layer and then to create handles so that the generated actions
again can be pushed down below in the network layer. This
relives the lower network layers from housing costly custom
components- and to readdress complex issues regarding security
and resource sharing. The attraction is that the application space
already has a very well developed provision to run custom
codes, share resources, and handle security issues for managing
multiple trust domains, etc. Much of that can be reused.
Each communication service software component within a
transparent network framework can easily be interactive –and
thus can tell each other about their dynamic states. As we will
show this transparent networking framework is also quite
lightweight. With this design principle we have recently
implemented a transparent FreeBSD. As an instance we have
also implemented an interactive version of an otherwise legacy
protocol TCP. We call it TCP Interactive (iTCP). Previously
researchers have proposed smart solutions to several of the
known network problems which required custom modification
within network software layers. However, despite their
functional advantages- each of these creative solutions faced
deadly deployment problem because these required highly
individualized changes within the network layers- which was
never realized. We now demonstrate how few such instances
based on TCP derivatives can be easily implemented at the
application level and operated on demand within this new
paradigm of transparent networking. These are the Snoop
protocol proposed by Balakrishnan et al. [2], and the WTCP
proposed by Sinha et al. [10].
Besides enabling application layer implementation path of
custom network solutions, the proposed protocol transparency
also offers a second type of benefit of no lesser implication.
Transport friendliness has been preached for applications for
quite some time by network researchers. Unfortunately the
problem has much to do with the classical implementations of
network protocols which themselves are not interactive or open
to applications. It is very difficult for applications to be friendly
with its non-friendly counterpart. In this context, the proposed
encouragement in protocol interactivity can make way for a new

Protocol Modeling with Transparent Networking

Javed I. Khan and Raid Y. Zaghal
Networking and Media Communications Research Laboratories

Department of Computer Science, Kent State University
233 MSB, Kent, OH 44242
javed|rzaghal@cs.kent.edu

 67

generation of transport friendly applications and usher
dramatically efficient solutions to currently notorious problems
arising from network unawareness or ignorance. A good survey
on TCP friendly protocols can be found in [12].
The paper is organized as follows: in section 2 we present the
general framework of our transparency service model and iTCP.
In section 3 we show how the interactive scheme can be used to
model two well-known protocols proposed in the literature to
handle traffic on wireless networks. In section 4 we discuss
performance and security issues and we conclude in section 5.

2. TRANSPARENT NETWORKING SERVICE

MODEL
In the logical sense, we envision every network layer as a
service provider for the layer above it, and as a service user of
the layer below it. For example, TCP layer provides its services
to the socket layer above and uses the services of the IP layer
below. In the interactive model, adjacent layers interact through
a well-defined, clean interface. The interface supports four
distinctive operations: (a) subscribe, (b) signal, (c) probe, and
(d) modify.
An upper layer subscribes to target events in the layers below.
Typically, a subscriber layer should be interested in certain
events that might occur in the target layer, and by subscribing to
events, the subscriber wishes to be notified when any one of the
events has occurred. In real practice however, only a subset of
the target layer events are subscribable. The transparency
service is obliged to fulfill the subscriber wishes as far as it
abides to the security restrictions and access privileges imposed
by the super user.
In the next section we demonstrate the four operations of the
transparency service by a general scenario.

A General Transparency Methodology
In the general framework, a Central Handler (CH) serves all
signals from all layers. It maintains a list of all subscription
instances for all subscribers and serves all probing and
modification requests. Figure-1 demonstrates the service model
through a simple case scenario where layer L wishes to
subscribe for event e in layer Q below. Notice that layers L and
Q are separated by layer P to emphasize that subscriber and
target layers are not necessarily direct neighbors. L makes a
Subscribe call (1) that includes: Subscriber L, Target Q,
subscribed event e, and the Transientware (T-ware) module T.
By making this call, layer L is basically telling CH: Whenever
event e happens in layer Q, please activate module T. Since CH
maintains subscription information of all subscribers, it adds
this subscription to its database. Next, CH forwards the
subscription request to the target layer Q (2). Also, Q adds a
subscription instance for (Layer L/Event e) to its internal state.
When event e happens, a signal is sent to the CH (3) which in
turn probes Q (4) to get the event information. When it receives
the event information, CH searches its database for the
appropriate T-ware module that matches the instance (L, Q, e)
and invokes it (5). Once invoked, the T-ware module can access
relevant parts of the internal state of layer Q and possibly make
changes to it as specified by the protocol being implemented.
The T-ware module can use the probe or modify operations (6)
to access/update the internal state of Q in accordance with its
access privileges.

iTCP

In the past few years, we have been developing iTCP, a real
interactive transport protocol based on the transparency service
model. We let TCP track congestion control related events like
‘retransmission timer time out’ event and ‘third duplicate ACK’
event. Actually, both events signify packet loss and cause TCP
to trigger a congestion control procedure. We extended the
standard socket API with subscription and probing system calls
to enable demanding applications to use the transparency
service.
Figure-2 depicts the basic architecture of iTCP. Upon opening
the socket, an adaptive application may bind a T-ware module
to a designated TCP event by subscribing with the kernel. The
binding is optional; if the application chooses not to subscribe,
the system defaults to the silent mode identical to TCP classic.
The logical sequence of operations follows the general
transparency framework described in the previous section and
proceeds as follows: (1, 2) subscribe, (3a, 3b) send a signal, (4a,
4b) probe kernel for event type, (5) invoke appropriate T-ware
module to serve the event, (6a, 6b) probe/modify internal state,
and (7) means that a T-ware module can also access or modify
certain state variables in the user application if necessary.
We have experimented iTCP with elastic video traffic by
allowing an adaptive video transcoder [7] to intercept the video
stream and modify the generation bit rate based on feedback
signals from iTCP. When the network is congested (a ‘timer
out’ event has happened) iTCP triggered a T-ware module
which ordered the transcoder to reduce its generation bit rate.
When congestion is dissolved, iTCP triggers another T-ware
module which ordered the transcoder to recover and return to
normal bit rate.
The scheme proved to be truly TCP friendly and have shown
substantial gain in video performance metrics like frame-wise
end-to-end delay and referential jitter. More information on
iTCP and related experiments can be found in [5, 8, 6].

3. PROTOCOL MODELING EXAMPLES
In this section we briefly describe two well-knows
protocols; Snoop protocol [2] and WTCP protocol [10].
They are among many other schemes proposed in the
literature to improve TCP performance over wireless
links. Then, we show how they can be modeled with our
transparent networking scheme through API and

Layer P

Layer L

Layer Q

Central
Handler

(1) Subscribe (L, Q, e, T)

(2) Subscribe (L, Q, e)

Layer L/Event e
(3) Signal

T-ware

(4) Probe

(5)

Figure-1. The sequence of operations in a general transparent
service model scenario.

(6) Probe/Modify

Figure-2. The TCP-interactive extension and API.

6a

3b

3a

user space

1

7

TCP kernel

2

4a

Event
 Information

Connection
State

Application

Probing
API

Subscription
API

T-ware
 (2)

TCP
Connectionsystem

K

ernel

5

Signal
Handler

4b 6b

T-ware
(1)

T-ware
 (n)

Event
Monitor

Socket
API

 68

signaling extensions. This transparent modeling offers
two potential benefits; (i) it becomes much easier to
implement and deploy the proposed protocol on a real
network, and (ii) new extensions or alternative algorithms
–as application level T-ware modules—can be
experimented with the new protocol without changing the
underlying infrastructure. For example, a protocol like
WTCP which was intended to improve TCP performance
over wireless links can also be augmented with extra T-
ware modules to add TCP friendly features.

3.1. TCP Performance over Wireless Networks
Wireless networks have certain characteristics that are not
handled properly by regular TCP such as high bit error
rate (BER) and long disconnections due to handoffs or
bad reception. When a packet is lost, regular TCP
assumes that it is due to congestion and will always
trigger congestion control procedures at the fixed host.
However, in a wireless environment, radio transmission
errors or handoffs can also cause packet loss. This will
result in significant reductions in throughput that can
severely degrade overall performance. A good survey on
proposed protocols for improving TCP performance over
wireless networks can be found in [4, 1, 3].

3.2 Snoop Protocol
The Snoop protocol introduced a module, called Snoop,
at the base station that monitors every packet that passes
through in both directions. The Snoop module maintains
a cache of TCP packets sent from the fixed host that have
not yet been acknowledged by the mobile host. A packet
loss is detected either by the arrival of duplicate
acknowledgment or by a local timeout. To implement the
local timeout, the module employs its own retransmission
timer. The Snoop module retransmits the lost packet if it
has it in the cache. Thus, the base station hides the packet
loss from the fixed host, therefore avoiding its invocation
of an unnecessary congestion control mechanism. Figure-

3 describers the basic architecture of the Snoop protocol
and figure-4 shows the interactive version of Snoop.
The scheme represents part of the snoop protocol that
handles one direction of the traffic only (Data segments
from FH to MH and ACK segments from MH to FH).
The snoop protocol uses a different technique to handle
traffic on the other direction, but it can be easily modeled
with the interactive framework in a similar fashion. The
model shown in figure-4, assumes that data segments are
cached in the network as in conventional Snoop for
performance reasons.
Whenever the Interactive IP layer receives a Data
Segment from the FH, or an ACK segment from the MH,
it sends a signal (software interrupt) to the application
layer. A Signal Handler is immediately invoked to serve
the signal upon its arrival. Based on the event type (Data
or ACK received), the Signal Handler invokes the
appropriate T-ware module either the Data Handler or
the ACK Handler.
The Snoop Agent is a process that runs in the application
layer. Its main role is to initialize and maintain the Snoop
State, subscribe with the interactive service, and setup the
Signal Handler. Afterwards, most of the work is done by
the T-ware modules. The Snoop State is similar to the one
used in the conventional snoop protocol. The Data
Handler handles the (Data segment received) event. It
implements the Data processing algorithm of the snoop
protocol. The ACK Handler handles the (ACK segment
received) event. It implements the ACK processing
algorithm of the snoop protocol. Both algorithm are
describes in detail in [2].

Both Data Handler and ACK Handler need to interact
with the IP layer and to access the Snoop state; they use
the special interactive API to (i) probe the IP layer and
Read relevant header parameters from the TCP segment

Link Layer

Snoop Agent

Snoop
State

Data
Processing

Base Station
N

etw
ork

Data segments
from FH

ACK segments to
FH

Data segments
to MH

ACK segments
from MH

ACK
Processing

IP

Figure-3. Conventional Snoop protocol mechanism.

API

Interactive IP

Snoop Agent

Snoop
State

Data
Handler

ACK
Handler

Signal Handler

A
pplication L

ayer

Data segments
from FH

ACK segments
to FH

ACK segments
from MH

Subscribe

Invoke

Signal

Read Data
header/
Update
cache.

Read/
Update
Snoop
State.

Read ACK
header/
Update
cache.

Data segments
to MH

Base Station

Figure-4. The interactive version of Snoop.

 69

that has just arrived and (ii) to update the cache of TCP
segments. The Data Handler adds segments to the cache
and the ACK Handler clears the cache or part of it as
decided by their respective algorithms. We assume that
both handlers have full access to the Snoop State; they
can read and update state variables as necessary.
3.3 WTCP
Wireless Transmission Control Protocol (WTCP) is
specifically designed for wireless wide area networks.
WTCP is based on the following two key principles: (i) it
uses rate-based rather than window-based transmission
control, i.e., it does not use ACKs for self clocking, and
(ii) it uses the ratio of the inter-packet separation at the
receiver and the inter-packet separation at the sender as
the primary metric for rate control rather than using
packet loss and retransmit timeouts.
WTCP uses a heuristic based on the average per-packet
separation to distinguish congestion losses from random
losses. In this heuristic, the receiver initially predicts that
all losses are non-congestion losses. The following
example from the WTCP original paper [10] explains the
main concept of this heuristic: consider that packets i and
j were received (i < j), but packets i+1 … j−1 were all
lost. In this case the receiver computes the average inter-
packet separation for each of the lost packets as:

ij
recvTimerecvTimeperPktSep ij

−
−

←

Where recvTimei is the time at which the last bit of
packet i arrive. If the value of perPktSep is close to the
measured inter-packet separation at the receiver (i.e.

within the band [average − K ・mean deviation, average
+ K ・mean deviation], where K is a constant), then the
receiver predicts that the losses were all random losses.
Otherwise, the receiver predicts that there was at least
one congestion loss, and the sending rate is reduced.
The basic scenario of the WTCP’s rate-based scheme is
shown in figure-5. The receiver computes the desired
sending rate via its rate control mechanisms, and notifies
this rate to the sender in the ACK packets. ACKs, thus,
carry both reliability information (SACK) and rate
control information. The sender monitors the reception of
ACKs, and adjusts its rate accordingly. It also monitors
the ACKs to tune the ACKing frequency, which it then
notifies to the receiver in future data packets.
In figure-6 we show WTCP modeled with the interactive
scheme. Here, we moved most of the processing to the
application layer as T-ware modules, i.e., the rate control
algorithm on the receiver (MN) and reliability algorithm
on the sender (FH). The interactive extension provided
the necessary API that allows TCP to trap events on both
ends. On the MN, when a new packet is received, this
event triggers the (inter-packet time computation) T-ware
module, which calculates new timers and updates the
internal state of WTCP. When it is time to perform the
periodic update, this event triggers the (sender rate
heuristic) T-ware module to calculate a new rate for the
sender. The updated rate is transmitted to the sender
through the API. On the sender side, when an ACK
packet is received, two T-ware modules are activated,
since the ACK packet carries both ACK and SACK
information. The (SACK processing) module discovers
holes in the transmitted packet sequence, i.e., discovers
lost packets, and issues retransmission request through
the API. The (ACK monitoring module) calculates a new
ACKing frequency rate based on the current transmission
rate and the internal state and sends the updated rate to
the receiver periodically.
The scenario shown in figure-6 assumes that applications
on both endpoints should subscribe with their respected
events. We also assume that a signal handler on each end
manages all signaling and activates T-ware modules.

Fixed Host

Application layer

Mobile Node

Application layer

WTCP

 Inter-packet time
computation

Sender rate
heuristic

Rate Control
WTCP

 SACK
Processing

ACK
Monitoring

Reliability

ACKing Frequency

Data Packets

Updated Sender Rate

ACKs and SACKs

Figure-5. Conventional WTCP protocl.

Mobile Node

Application layer

TCP

 Inter-packet Time
Computation

Sender Rate
Heuristic

Rate Control

API

Fixed Host

Application layer

TCP

 SACK
Processing

ACK
Monitoring

Reliability

ACK Packets

Data Packets

Send
updated rate
to FHPeriodic

time
update

New
packet
arrival

Events

New
ACK
arrival

Events

Request
a retrans-
mission.

Update
internal
state

API

Update
internal state

Send
ACKing
frequency
to MN

Figure-6. The interactive version of WTCP.

 70

4. Performance Issues
4.1. Overhead Cost
The transparency model implementation of both
protocols adds some extra cost to the original scheme as a
result of the added signaling and system calls overhead.
Here, we show an abstract comparison of both interactive
and conventional schemes of the Snoop protocol. In
table-1 we show several quantities that define cost
variables and wireless link characteristics. The first
column in table-2 shows the estimated cost incurred by
deploying the Snoop protocol for three scenarios: (1)
error-free, handoff-free wireless link, (2) error-prone link
with BER = 1 error for each x Mbytes, and (3) a moving
mobile node that triggers a handoff every n seconds. The
second column represents the interactive version of
Snoop. In the first scenario (a reference case) iSnoop
added overhead came from Sub, S, H, and Ui - Un.
Actually, in real practice these added costs should be very
small (almost negligible). For example Sub, H, and Ui all
involve running a small system call and OS context
switch cost (around 10 ns on a 2 GHz machine). Besides
the reference case, the other two scenarios were identical
in both protocols. The same kind of analysis holds for the
WTCP case, but we don’t include it here for space
limitations.

4.2. Security and Practice
The added small overhead cost can be justified for many
practical gains allowed by the interactive model. As we
mentioned earlier, since T-ware modules run in the

application space, they will enjoy a well developed
provision tuned to run custom codes, share resources, and
handle security issues. Actually, the security issue is of
great importance in such engagement. Running the
Active modules inside the network raises many security
concerns that usually require complex techniques to
maintain acceptable security level and stability within the
network domain. Moving these modules up to the
application layer makes security management a much
easier task. Actually, Subscriber applications and T-ware
modules can only access internal network state through
the API extension. Therefore, by imposing the
appropriate access restrictions on each party, we can
guarantee certain security level. Furthermore, since the
API extensions are implemented as system calls, we can
simply extend the OS security model and reuse available
OS facilities like memory management and resource
sharing to achieve even better performance. These
characteristics make the transparency model an attractive
and a practical choice to implement and deploy many
useful protocols which thus far had been only simulated
or tested on a small-scale controlled testbed.

4. Conclusion Remarks
We have particularly chosen two ‘original source’
examples for demonstrating an implementation path via
transparent networking. But this is not to endorse them.
The purpose is to show that these and many other
solutions which required modification within network
layers can be implemented at application layer as well
with transparent networking. For the above two, please
note because of their basic usefulness researchers have
subsequently proposed several improved variants [1, 4].
The proposed transparency via interaction and triggered
T-ware deployment will provide them implementation
paths as well. In fact, since T-ware modules operate at the
application layer it will be much easier to switch from
one to another improved one.

5. References
[1] F. Anjum, and L. Tassiulas, “Comparative Study of

Various TCP Versions Over a Wireless Link With
Correlated Losses,” IEEE/ACM Transactions On
Networking, Vol. 11, No. 3, June 2003.

[2] H. Balakrishnan, S. Seshan, and R. Katz, “Improving
Reliable Transport and Handoff Performance in
Cellular Wireless Networks,” ACM Wireless
Networks, Vol. 1, 1995.

Name Meaning
CACK Overhead cost per ACK segment
CDAT Overhead cost per Data segment
NACK Number of ACK segments
NDAT Number of Data segments
Un Update State/Cache cost in normal mode
Ui Update State/Cache cost in interactive mode.

We assume that Ui > Un since Un might involve
making a system call.

Sub Subscription cost
S Software Interrupt ‘Signal’ cost
H Signal Handler cost
R Retransmit cost
T Total transfer size (Mbytes)
Choff Handoff cost
R Wireless link bit rate (Mbps)

Table 1. Cost and link parameters for Snoop and iSnoop

Scenario Classic Snoop Interactive Snoop (iSnoop)
Error-free, handoff-free
wireless link

SNOOPfree =
NDAT (CDAT + Un) + NACK (CACK + Un)

iSNOOPfree =
Sub + NDAT (S + H + CDAT + Ui) +
 NACK (S + H + CACK + Ui)

Error-prone link with
BERx = 1 error / x Mbytes

SNOOPfree + (T / BERx) iSNOOPfree + (T / BERx)

Handoff every n seconds SNOOPfree + Choff (8 · T / n · R) iSNOOPfree + Choff (8 · T / n · R)

Table 2. Algebraic overhead cost of Snoop and iSnoop in three scenarios of wireless link properties.

 71

[3] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R.H.
Katz, “A comparison of mechanisms for improving
TCP performance in wireless networks,” ACM
SIGCOMM Symposium on Communication,
Architectures and Protocols, Aug. 1996.

[4] H. Elaarag, “Improving TCP Performance over Mobile
Networks,” ACM Computing Surveys, Vol. 34, No. 3,
Sep. 2002, pp. 357–374.

[5] J. Khan, R. Zaghal, and Q. Gu, “Symbiotic Streaming
of Elastic Traffic on Interactive Transport,” IEEE
ISCC'03, Antalya, Turkey, July 2003.

[6] J. Khan and R. Zaghal, “Jitter and Delay Reduction for
Time Sensitive Elastic Traffic for TCP-interactive
based World Wide Video Streaming over ABone,”
Proc. of the 12th IEEE-ICCCN 2003, Dallas, Texas,
Oct. 2003, pp.311-318.

[7] J. Khan and D. Patel, “Extreme Rate Transcoding for
Dynamic Video Rate Adaptation,” 3rd Int. Conference
on Wireless and Optical Communication WOC 2003,
Banff, Canada, July 2003, pp410-415.

[8] J. Khan and R. Zaghal, “Event Model and Application
Programming Interface of TCP Interactive,” Technical
Report (TR2003-02-02), February 2003.

[9] Net100, “http://www.net100.org” The Net100 Project-
Development of Network-Aware Operating Systems,
2001.

[10] P. Sinha, N. Venkitaraman, R. Sivakumar, and V.
Bharghavan, “WTCP: A reliable transport protocol for
wireless wide-area networks,” Proceedings of ACM
Mobicom’99, Seattle, WA, pp. 231–241.

[11] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall,
and G. Minden, “A Survey of Active Network
Research,” IEEE Communications Magazine, Vol. 35,
No. 1, pp80-86. Jan. 1997.

[12] J. Widmer, R. Denda, and M. Mauve, “A survey on
TCP-friendly congestion control,” IEEE Network, vol.
15, pp. 28-37, May-June 2001.

