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Abstract 
The emerging distributed internet computing 

paradigms envision large conglomeration of dynamic and 
internet-wide distributed computing resources including 
general and special purpose computing nodes, mass 
storage, and complex services built on them. A 
particularly novel challenge here is the automated 
seamless management of distributed resource pool. The 
early computer networking tried to shy away from 
graphical visualization. However, the complexity and 
scale of these newly emerging networked systems makes 
dynamic operational monitoring one of the most critical 
factor to determine their viability. For some time we have 
been engaged in experimentation with various internet 
computing models and services with real system 
implementations over grid like infrastructure. In the 
process we have developed novel yet detail formalisms for 
direct visualization of lifecycle of the application services. 
In this paper we present the design of this decentralized 
monitoring and controlling mechanism. This design can 
be used as a blueprint for emerging internet computing 
systems. 
 
 
1. Introduction 
 

The Internet and particularly the Web is increasingly 
becoming a computation centric network. Emerging 
initiatives, ranging from scientific grids to application 
services networks, increasingly view network as an 
integrated platform for joint computing and 
communication rather than one only for communication. 
The Grid initiative is exploring technology so that 
supercomputers, including distributed idle cycles of 
massive number of computers in the Internet can be used 
to perform advanced scientific tasks [13]. The Grid vision 
contemplates dynamically networked massive computing 
centers and massive data storage facilities interconnected 

by high performance data pipes. Due to the dynamic 
nature of the infrastructure, a computation may not 
receive the same set of resources on all its runs or it may 
change even when a computation is underway. The 
system status fluctuate as the resources changes.  In 
another end of spectrum, Active network paradigm is 
experimenting with networked router embedded 
computation. It envisions providing creative solutions to 
many of currently hard-to-tackle network problems 
ranging from congestion control for time-sensitive elastic 
traffic, detection and recovery under distributed denial of 
service, to Internet telescope [17]. These essentially 
require placement and management of dynamically 
distributed active and extensible routers, nodes, and the 
smart applications deployed onboard over the vast 
Internet. Also emerging content services networks already 
have started flourishing over the Web using the ad hoc 
backend server technology. With emergence of active 
proxies- spearheaded by IETF technologies such as SOAP 
[18], OPES [19], ICAP [20], it is very likely that a more 
efficiency form of network distributed content services 
will emerge where the content processing (such as 
adaptation, composition, personalization, filtration) will 
be performed on network embedded multi-level open 
architecture based active proxies rather than on 
inextensible proprietary backend servers.  Given the scale 
and complexity of the Internet, and the sophistication of 
the emerging netcentric systems, visualization will play 
an ever increased role in this development. A particular 
novel challenge here is the automated seamless 
management of distributed resource pools.  Unfortunately, 
the current techniques for network’s visualization are 
quite inadequate. 
 

In last few years, we have developed and 
experimented with a number of Ad-hoc Internet Service 
Systems (AISSs). The developed Ad-hoc Internet Service 
Systems do not require any specific service node and have 
been tested on open Internet environment using 
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worldwide nodes. In the process of their development, 
launch, and management, we were forced to develop 
generic visualization formalism. Based on this experience, 
in this paper we suggest an open architecture based 
process monitoring infrastructure for netcentric Internet 
Systems. The system works through a distributed 
messaging formalism that conforms to the multi-party 
hierarchical development pattern of practical complex 
systems. At the core the messaging has been built on top 
of the powerful and formal process description language 
of Petri Net [16]. The propagation of status information is 
controlled by hierarchically decentralized agents, and soft 
filtering. However, the messages can be used to construct 
numerous perspectives and views detailing the operation 
of the system for the human operator of the target 
netcentric system. 
 

In this paper in section two we first present the design 
considerations of this visualization system including a 
brief area survey of related works. Then in section 3 we 
present the architecture of the messaging and visualization 
framework. In section 4.1 and 4.2 we then explain the use 
as well as the capabilities of the framework by two real 
examples of complex netcentric systems. Though in this 
paper we present the case with the transcoder channel and 
the made-to-order channel, but this framework is the 
result of our experience with a number of complex active 
services (active prefetch-proxy [1], daisychain forwarder 
[2], harness group communicationware [3], etc). 
 
2. Design Considerations 
 
2.1 Related researches 
 

Though traditional networking research has ignored 
visualization, but monitoring and management of complex 
distributed system are becoming critical for high-
performance distributed computing. However, monitoring 
an active distributed system such as Grid, active 
application or the Internet content services has several 
serious obstacles to overcome. The first set of complexity 
evolves from the scale, dynamism and versatility 
requirements. Additional challenge arises from 
autonomous ownership of the Internet systems. It is 
further complicated by the hierarchical and multi-party 
nature of net centric systems development pathway. 
During run time, a sound message management principle 
becomes very important otherwise potentially huge 
number of status messaging can end-up being a serious 
performance drag. 
 

Recently, there have been few pioneering works in 
the area of Grid visualization. Tierney et. al. [4][5] 
suggested an agent based monitoring system to automate 

the execution of monitoring sensors and the collection of 
event data in Grid Environment. They use a direct 
connection between a producer and a consumer to reduce 
communication traffic. 
 

Waheed et. al [8] developed an monitoring 
infrastructure to share monitored data using common 
APIs. The infrastructure is built on three basic modules, 
sensors, actuators, and a grid event service, and at the top 
of those basic modules, they built a layered monitoring 
system. Another layer based visualization system was 
suggested by Bonnassieux et. al. [6]. They offer a flexible 
presentation layer in huge and heterogeneous environment. 
It provides a simple, autonomous and extensible model 
that enables the visualization of any level of abstraction 
using a hierarchical view model of resources status, with 
propagation of monitoring status up to the top of the tree 
view. The gathered information for monitoring can also 
used for system management. Reed, et. al. [7] suggests 
using system monitoring results for adaptive control to 
improve system reliability. The system uses diskless 
check-pointing, which enables more frequent checkpoints 
by redundantly saving check-pointed data in memory, and 
low-cost mechanisms to capture data for failure prediction, 
which enables creation of dynamic schemes for improved 
application resilience. 
 
2.2 Proposed System 
 
2.2.1 Autonomous Service Hierarchy 
 

One of the major challenges that differentiate 
netcentric systems from the traditional modular 
distributed software is the fact that the concept of internet 
autonomous systems (that separates network for the 
Internet) also extends to the software systems. This 
hierarchically dependent multiparty involvement extends 
to both to the development process of compose-able 
services as well as to the runtime service ownership. 
Clearly, these systems are not built with a simple one big 
program rather with several independent system 
components running on multiple computing systems. 
Each system component is also composed with several 
sub components and distributed among multiple 
computing systems. Also uniquely quite often these are 
developed under multiple autonomous service authorships, 
and deployed and managed under multiple service 
ownerships. Because of such nature, system monitoring 
and controlling get considerably more difficult and 
complex. In addition, the trend that current network based 
sub-systems and components have to go through frequent 
modification for the newly included or upgraded 
components makes the overall task further unmanageable. 
As a result, the system management and monitoring 



Published in the Proceedings of the Int. Conf. on Computer Graphics, Imaging and Visualization   
Penang, Malaysia, 26-29 July 2004, Elsevier, ISBN 983-861-289-8, p319-327 

software encounters difficulties to visualize whole system 
across the participating computing systems and services, 
and some times the software is faced with disparity 
between system status reports and control messages, and 
their representation in the system. However, the same 
complexity makes monitoring and visualization of the 
process nevertheless more critical. Therefore, for the 
Internet centric system’s visualization the support for 
autonomous modular visualization becomes very critical. 
In this paper we present a simple yet powerful framework 
towards this goal. 
 
2.2.2 Other Features 
 

Besides autonomous modular visualization we also 
offer the following architectural features to overcome the 
challenges of scale, dynamism and versatility 
requirements.  

 
• Controllability of message flow. 
• Adaptation of system viewer’s perspectives. 
• Use of meta-information for interpretation of 

current system information. 
 

As the system gets bigger, the generated system 
status messages also grow. Without controllability of a 
system message flow, a system is easily overwhelmed by 
the generated status messages and couldn’t deliver 
important information. 
 

The system status representation should be useful 
enough to produce multiple points of views. Users require 
different perspective views depending on user’s interests 
at a given moment. Representing same system 
information in various ways will increase a user’s focus 
on his/her interests. 
 

The separation of system information data and its 
structures by using meta information makes it easy on 
upgrading system components while system is running 
and verifying message information as well. Using the 
meta information also leverage automation of system 
information representation. A system can generate various 
target representations by dynamically interpreting 
message data with its meta information. 
 

We have built the visualization schema on the 
powerful process description language of Petri Net. A 
Petri Net is a graphical and mathematical modeling tool 
which consists of places, transitions, and arcs that connect 
them. [16] It is powerful tool for modeling systems that 
are concurrent, asynchronous, distributed, parallel, 
nondeterministic, and stochastic. It is well suitable to 
describe a system’s status and its transition. Recent 

proposal of Petri Net Markup Language (PNML) is 
pushing Petri Net language to more interchangeable 
format for system modeling. [15].  

 
The framework we propose is particularly suitable for 

monitoring the lifecycle of loosely coupled and scalable 
complex multiparty active systems. The developed 
formalism allows sub-system to maintain its own status 
and control messages within it. A sub-system, when used 
as a part of a high level composed system, can however 
further report some of its status and control messages to 
its upper level system. Furthermore each level supports 
several reporting and message propagation modes to 
allow performance tuning. The time, type, and content of 
messages are decided initially by the service designer. 
However this default behavior can be overridden by the 
system operator at run time. A privileged user can freely 
control and monitor the system status using a flexibly 
configurable multi-view visualization system. 
 
3. Ad-hoc Internet Service System Model 
 

We demonstrate the use of this visualizer system on a 
set of custom transport systems built on ABONE [14]. 
ABONE [14] is an operational network and provides an 
Internet wide network of routing as well as processing 
capable nodes. The software structure of ABONE node 
involves a native Node Operating System (NOS) and 
Execution Environments (EEs), which acts like a remote 
shell and provides a programming framework to ABONE 
applications. A special EE called ANETD allows users to 
obtain secured and controlled access to the ABONE 
resources and support EE module management, such as 
starting, stopping, monitoring modules and EE.  We have 
proposed the Ad-hoc Internet Service System (AISS) 
framework to launch and manage general purpose internet 
services. For ABONE we have also developed a 
distributed system shell called Virtual Switching Machine 
(VSM), which turns an ABONE computer into a node 
capable of working within AISS service [12] 

 
The AISS is shown in  Figure 1. It accepts deployed 

and lunched system components to build and run ad hoc 
deployable distributed Internet Service. A system 
component is deployed and lunched after authenticated by 
the VSM with the system policies. [12]. The Ad-hoc 
Internet Service System has following features. 
 
• A system consists of a group of sub-systems. Each 

sub-system may have its own sub-systems/services. 
• Each sub-system can be independently executed 

and monitored. 
• Each sub-system has uniform interfaces to access 

its status and information. 
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A sub-system has its own 

services/components to the system, 
and it is connected to the other sub-
systems. Each sub-system further can 
be divided into more small sub-
systems/components and has its own 
statuses and controls. The control and 
monitor user interfaces run 
independently from the monitoring 
system and controlling system. With 
the separation of the user interfaces 
from the monitoring and controlling 
system, a user freely controls and 
monitors the system from any 
authorized terminal. 
 
A status code represents a status of a 
system. The status code only has 
meaning within the ‘system’. The 
meaning of the status value is 
represented in a well formed status 
description language and is gathered 
and interpreted by the monitoring 
system. When a new system 
component is developed, the 
description of the status values are 
supplied together with the component. 
The monitoring and controlling 
system dynamically binds and 
interprets the meaning of status 
message with the given description. 
 
3.1 Visualization Architecture 
 

 Figure 3 shows visualization 
architecture. The monitoring 
components of AISS are run on Kent 
VSMs. They are deployed and 
executed on Kent VSM as a part of a 
service construction. A Status 
Monitor (SM) processes status 
message of a sub-system. A SM 
stores status message structure 
descriptions and delivers or saves 
status messages of the sub-system. A 
Control Monitor (CM) handles 
control messages. A CM is added in a 
sub-system when the sub-system 
supports a control mechanism from 
outside of the system. Initiation and 
execution of a monitor is coordinated 
by sub-system management software. 
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Figure 1 Ad-hoc Internet Service System Model 
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Figure 2 A Status Message Structure and a Status Message 
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Figure 3 Visualization System Architecture 
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3.2 Dynamic Message Binding 
 

The visualization system supports 1) dynamic 
interpretation of the system status messages, 2) seamless 
navigation through layer abstraction and visualization of 
the given layer of a system, 3) uniform method of 
visualization at all levels. When a new system component 
is developed, the descriptions of its status message 
structures and the descriptions of its state diagram are 
supplied by the developer together with the component in 
a state description file (SDF). As per this template, a 
status monitoring and visualization system dynamically 
binds and interprets the meaning of a status message with 
the given description.  

 
The Visualizer is an independent set of software 

which can interprets state messages with their state 
description file, visualization device description, and 
user’s display method selection. 

 
Each system is composed of code modules (if it a 

base system) and/or isomorphic sub-systems (for more 
complex ones). Each time a system is installed (i.e. all of 
its sub-systems are launched) a status monitor, which is 
one of system code modules, is also installed. A set of 
messages are generated towards this state monitor in sub-
system’s leader module. A visualization system can use a 
subset of the messages to present various perspectives on 
the system. The key challenge here is that these messages 
should carry enough information to identify it-self with 
respect to the major perspective frameworks within which 
an active service operates.  Figure 2 shows an example of 
status message structure and a status message. Below we 
provide the proposed try-partite identifier system. This 
message system encodes the fields in its messages (i) 
system identifier, (ii) subsystem module identifier, (iii) 
system state identifier, (iv) state execution count (v) 
system status, (vi) service instance identifier, (vii) service 
subsystem instance identifier, (viii) service instance status, 
(ix) service location instance identifier, (x) platform 
identifier (xi) platform status. The primary state identifier 
set i-iii is assigned by the module programmer who has 
coded the active modules. This identifier set has to be 
hierarchically unique within a specific version of specific 
software. The identifier set vi-vii are to be assigned by the 
active service administration system (such as EEs/ 
ANETDs) at the time of installing and initializing 
instances of the service at each instantiating of loaded 
modules. Again, these identifier set has to be 
hierarchically unique within the service administration 
domain.  The last identifier x is to be supplied by the 
active node’s owners. These are assigned when a node 
joins an active network domain. This typically can include 
autonomous system number, IP address, location etc. The 
status information iv and v is computed by the code 

modules at run time. Its values are determined by the 
programmer. The service instance status information viii, 
if any, is passed on to the monitor messaging agents by 
the service administration local agent (such as node EE). 
The status information xi, if any, is set by the local node 
administrator during the period the service is running. The 
monitor messaging system collects and composes the 
messages prior to generating the network messages. 
Messages can contain control flags to control the mode of 
reporting and even to filter the content to tune 
performance. The system allows three reporting modes (i) 
REAL-TIME, (ii) BATCH, (iii) TRACE-ONLY. In real-
time mode the monitor messages are generated and sent 
when the code executes through the state points. In 
BATCH-ONLY mode the messages are generated at real-
time but forwarded periodically in batch. The period is 
decided by a PERIOD field. The mode feature only 
modifies the time of sending the monitor messages but do 
not affect their content. Three flags are further used to 
negotiate filtering the three status fields in the messages. 
In every message sent by the monitor messaging agent the 
flags are set according to the current value of these flags. 
A set of control messages can be potentially sent in 
reverse direction to request change in these flags (and the 
PERIOD field). The transition among the modes is shown 
in Figure 5. 
 
4. Case Analysis 
 

In this section we illustrate the features of the 
visualization schema with two real examples.  The first 
example illustrates a simple netcentric system which 
offers a virtualized bandwidth adapting high level 
transport. It used network embedded video rate 
transcoders. The second example uses multi-level 
virtualization. 
 
4.1 Test Case 1: SONET Channel system 
 

“SONET Channel” is an internet service packaged as 
custom channels which offers video rate transcoding for 
video applications. Internally it is made of network 
deployable distributed video transcoding modules. 
However, end-applications do not have to worry about 
them. From end-applications’ point of view, they simply 
request and use this special transport by socket like 
interface and rest is handled automatically.  See [9][11] 
for detail of this already demonstrated concept system. In 
reality, the VSM redirects the request to SONET manager 
module and which in turn handles the installation of the 
components in the pathway between the requesting end-
points with help from the VSMs. The channel’s basic 
components are X-DEC, X-ENC, and X-MUX. 
Depending on the components needs, the SONET channel 
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deploys as many X-ENCs as possible to fulfill the user 
required transcoding rates. When a video server-
application sends a video stream, X-DEC decodes the 
input video stream and schedule to send a video unit to 
one of X-ENCs based on the available computing and 
network resources on the network. An X-ENC encodes 
given video unit and forwards the transcoded video unit to 
the X-MUX. An X-MUX forward received video units to 
a client in sequence.  

 
We have augmented the proposed visualization 

mechanism with this novel SONET channel system. 
Figure 6 shows the underlying Petri-net model of the 
sonnet channel system. This is provided by the SONET 
developer and resides at the Channel Service Module 
Server ( Figure 1). This is retrieved by visualization 
manager (in SONET’s control center program) as the 
channel system is installed and then the visualization 
manager begins receiving the status messages as the 
channel system starts running.  

 
Figure 7 shows an example display schema. When 

the visual system receives a system status message, the 
visualization manager interprets the value with given 
system status message description. With the programmer 
supplied component and status descriptions, the scheme 
can be quite intuitive and telling as shown in Figure 7. 
The manager of the service can receive real-time 
information about the status of the entire service based on 
this. Since, the actual “symbols” and interpretation 
method of the symbols are sent to the visual system - thus 
very rich real-time status information can be passed on to 
this schema by this method. 
 
4.2 Test Case 2: MTO Channel System 
 

“MTO Channel” is another interesting example of 
custom channels that 
features concurrent 
communication to meet the 
QoS requirements specified 
by the user applications [12]. 
It too uses a socket like 
interface. However, 
internally, it’s manager 
component analyzes 
network graph and 
individual links’ QoS 
metrics and then casts 
hierarchically configured 
pathways. The splicing is 
performed by embedding 
specialized forwarding 
modules in appropriate 

network points. For infinite hierarchical construction 
these modules are packaged further into two special 
channel constructs called “Concurrent Channel (CC)” and 
“Altered-Routing Channel (ARC)”. An MTO Channel is 
constructed by using the above two types as its sub 
components in various combinations. The  Figure 4 shows 
an example CC channel construction scenario using two 
ARC channels as its sub channels. [10]. As before for 
each sub-system the messages are default routed to their 
sub-system’s status monitor (in this case, all the status 
message is delivered to the Channel Control Visualizer).  

 
The messages can be used to create quite a versatile 

set of views and perspectives about the overall service.  In 
this example we show two views. The first shows (Figure 
8) color coded system status on a “Component Location 
Matrix” view. Here all the modules (including those of 
sub-systems) have a column, and each Internet site 
participating in this service (i.e. running a module) has a 
row. The color in a cell shows the status of the module 
running on a site. In this channel, the same set of 
messages has also been used to build another scheme 
“Hierarchical Service Tree” view.  It shows as a tree how 
that which sub-systems are operating or not and what is 
their status- thus can identify issues specific to ownership 
of sub-services. The power of the proposed visualization 
schema is derived from that fact that a wide number of 
views can be constructed to meet quite diverse range of 
requirements conforming to the multi-party and 
hierarchical ownership and development pattern of 
Internet services and systems. 
 
5. Conclusion 
 

Internet computing increases the availability and the 
resource utilization. However, it also increases 
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Figure 4 Concurrent Channel builds with using two Altered Routing Channels
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complexity of a system. As a system becomes complex, 
the control of the system and the representation of the 
system status increase their complexity too. It becomes 
almost impossible to manage a system without proper 
status monitoring and controlling system. In this paper, 
we have presented a streamlined yet simple status 
representation methods for net centric systems using 
decentralized component based status reports and 
dynamic binding of message descriptions. The suggested 
visualization system for Ad-hoc Internet Service System 
gives intuitive status report and simple control using 
decentralized status report and controlling mechanism. 
Layered approach along with dynamic bindings of 
message descriptions supports powerful abstraction for 
status and control representation. This work can be used 
as a blueprint for an open standard based visualization 
framework for the emerging internet computing systems. 
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Figure 5 Monitoring Point Status Transition Diagram 
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Figure 6 SONET Service Status Transition 
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Figure 7 State Transition Diagram View of SONET System 

 

 
Figure 8 Color Coded Component & Location Matrix View of MTO Channel System 
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Figure 9 Hierarchical Service Tree View of MTO Channel System 


