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Abstract 
 

Typically any single sensor instrument suffers from 
physical/observation constraints. This paper discusses a 
generalized framework, called polymorphic visual 
information fusion framework (PVIF) that can enable 
information from multiple sensors to be fused and 
compared to gain broader understanding of a target of 
observation in multidimensional space. An automate 
software system supporting comparative cognition has 
been developed to form 3D models based on the datasets 
from different sensors, such as XPS and LSCM. This 
fusion framework not only provides an information 
engineering based tool to overcome the limitations of 
individual sensor’s scope of observation but also provides 
a means where theoretical understanding surrounding a 
complex target can be mutually validated by comparative 
cognition about the object of interest and 3D model 
refinement. Some polysensometric data classification 
metrics are provided to measure the quality of input 
datasets for fusion visualization. 
 
1. Introduction 
 

3D visualization is becoming widespread and is being 
used in many fields. However, a relatively new area is 
comparative visualization. The methodology of correlating 
information from different experimental techniques to find 
the 3D structures improves scientists’ understanding about 
the objects they work on. This has been recently 
demonstrated in a growth in interest in combining CT 
(computerized tomography) and MRI (magnetic resonance 
imaging) information [3,4].  Comparative cognition is an 

important and strong means to obtain new knowledge 
about any complex new object or system. Multiple sets of 
data are collected and compared in the process. How to 
make use of these data sets is a complex issue and depends 
on what objects are worked on, which field the research is 
in and what purpose of the research is, etc. The most 
straightforward usage is to combine the data sets to obtain 
a composed model about the interest object when these 
multiple sets of data are complementary to one another. 
This is a data additive process for increasing the visibility 
of object of interest. Current research in the area mainly 
has produced very domain specific systems which fused 
data from very specific modes. In our project we 
investigate and propose how a generalized fusion 
framework can be constructed. We propose an algorithmic 
model of multi-sensor information fusion that closely 
correspond the cognitive process of comparison based 
knowledge exploration and hypothesis refinement. The 
overlapped parts among polysensometric datasets are 
registered and cropped out to form a refined 3D model, 
which is closer to the real structure of object of interest 
than that from single sensor. This is subtractive process for 
3D model refinement. Along with it we have also 
developed a new automated system. It accepts sets of 
information from multiple techniques and combines them 
for 3D visualization. In the system, all data are mapped 
into one domain. Also, new data can be injected based on 
the knowledge of the field of the system user. The system 
can be easily extended to other new instrument. Naturally 
the user knows the physical-chemical meaning of data and 
has the proper library to process the data and accordingly 
the user can insert domain specific processed and reuse 
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more generic available information processing tools.  The 
framework works as an exploration shell for its user.  

The following sections of the paper explains 
polymorphic visual information fusion framework, 
describe our algorithms for inferring a 3D models, 
introduce some data classification metrics for the quality 
of input datasets to be used for fusion visualization and 
present the example about 3D structural information of 
liquid crystal based on XPS (X-ray Photoelectron 
Spectroscopy) data and LSCM (3D Laser Scanning 
Confocal Microscopy) data about the same area of a piece 
of liquid crystal film.  
 
2. Polymorphic Visual Information Fusion 
(PVIF) Framework 
 

The basic idea is illustrated in figure 1, in which we 
take a real physical-chemical experiment as example. Our 
polymorphic visual information fusion model generates 
estimation of 3D structure of objects, based on multiple 
techniques and allows their systematic comparison and 
fusion. In this example, the data, collected from XPS and 
LSCM, might be modified by domain specific filters, as 
well as geometric transformations (such as rotation, 
cropping, zooming, tilting and data mapping, etc.). After 
being filtered, their corresponding 3D models are 
generated. Next, it allows these 3D models to be 
visualized as a composite model. It can further generate a 
fuller model by volume-filling algorithm set and measure 
the differences by using 3D comparison algorithm set. 
This process is extensible to additional sensor modalities. 
Overall the system allows domain specific as well as 
generic geometric algorithms, filters, and transformation 
algorithms to be easily infused in the processing pathway 
leading to the comparative 3D model. 

In order to explain our information framework, we only 
use two abstract techniques A and B. At the same time, we 
use the following concepts and corresponding notations to 
facilitate explaining our visualization strategy: (i) I - the 
total information about the experimental object; (ii) 
Estimation I - estimation of I from experimental data; (iii) 
IA - the information generated by technique A; (iv) IB - the 
information generated by technique B; (v) F - framework 
for the real structure of experimental object; (vi) FA - 
framework for the structure “seen” through technique A; 
(vii) FB - framework for the structure “seen” through 

technique B; (viii) FR - framework for the registration 
between the intersection of frameworks A and B, i.e. 
 

 
Fig. 1. polysensometric visual information fusion 
model. In this figure, we derive the 3D models 
from sets of information, which are generated by 
different experimental techniques, and compare 
these models to obtain the structure estimation 
of our research object to be visualized. The 
model is extensible 
 
registration framework; (ix) FV - visualization framework 
for FR; (x) Transformations T[i] - any transformation i 
applied on information set; (xi) Error E - the difference 
between two information sets. 

In reality, for a complex target of observation we are 
never able to get the real structure of the target, total I 
under framework F. But we can approximate it as close as 
possible to obtain estimation I’. So our objective is to 
obtain estimation I and visualize it under FV, which is 
close enough to F. The relations among these concepts and 
notations are: the total information, I, is corresponding to 
the total framework, F; IA is information about I under its 
framework FA; IB is information about I under its 
framework FB; FA and FB are registered towards FR based 
on the intersection part between them; IA

R is part of 
information IA after registration under FR; IB

R is part of 
information IB after registration under FR; we use the 
union of transformed IA and IB as the estimation of I, I; I is 
visualized under FV. The inferring algorithm is showed in 
figure 2 and the specific details will be covered in the next 
part of this paper. 
 
3. Algorithms 
 

The data fusion is achieved through a set of processing: 
space projection, registration, volumetric filling and 
comparison, etc. This section interprets those algorithms 
used to obtain reasonable data fusion results. 
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3.1. Sensometric to Geometric Projection 
Algorithms 
 

The original input datasets are collected from some 
sensors. These sensors probably have different space 
coordinate systems and resolutions. In these cases, we 
need algorithms to project the sensor domain sample 
datasets to a common geometric space. After the original 
datasets processed by these algorithms, they should have 
the same spatial orientation and resolution and be ready 
for the following operations. The frequently used 
transformations are including zoom and tilt etc.  

I * T[0] * …* T[n] -> I’ …(1) 
In this formula, I is input dataset, I’ is output dataset. 
T[i](0 <= i <= n) are n+1 transformations applied on input 
dataset I. 
 
3.2. Registration Algorithms 
 

After we project the original sensometric datasets to 
geometric space, we need the automated registration 
algorithms to register the voxel in one spatial datasets with 
the corresponding voxel in the other spatial datasets. In 
our research, registration algorithms are divided into two 
groups: 2D registration and 3D registration. We use 
mutual information [7,8] or FFT [9] to align our datasets 
in registration framework, in which the common part of 
two datasets is normally 2D. Also, we use 3D registration 
to fuse two 3D estimation models, IA

V and IB
V, in 

visualization framework. Some 3D transformations are 
applied on two models, and difference between them is 
calculated. Difference metrics are discussed later in 
comparison algorithm. Here least error method is used to 
decide which transformation will be used to get the final 
estimation of the real model: 

IA
V = fi

A[IA]; …(2) 
IB

V = fi
B[IB]; …(3) 

E’ = Diff(IA
V, IB

V); …(4) 
In these formula, fi means ith transformation on dataset A, 
Diff means difference metric calculation between two 
parameters.  
 
3.3. Comparison Algorithms 
 

Comparison algorithms are used for inferring the final 
3D model. It checks if the loop ending conditions have 

been met. There are many 2D whole-image level 
comparison algorithms, such as mean-absolute-error 
(MAE), root-mean-square-error (RMSE), peak signal-to-
noise ratio (SNR) etc. [1, 2]. In this example system, we 
used comparison algorithms that are extension of those 
used in 2D. The greater MAE and RMSE, the more 
different these two 3D models are; SNR is on the contrary; 
the closer p is to 1, the more correlated are the two sample 
images. 
 
3.4. 3D Model Inferring Algorithm 
 

We use 3D model inferring algorithm to infer the final 
3D visualization model for the object of interest (see 
figure 2). The algorithm is composed of two loops. We 
explain the algorithm by using two techniques, A and B, 
as an example. First, the input datasets from sensors 
generate 3D models of their own by using hypotheses Ha 
and Hb respectively. Then, these two 3D models are 
projected onto registration framework, FR. In registration 
framework, the intersection parts of FA and FB are 
registered by applying a series of transformations. Least 
errors are used to get the optimum registration position. 
After registered, IA and IB are compared to verify the 
hypotheses at the very beginning. Least error principle is 
also used as the optimum means to obtain the best 
theoretic 3D model about the object of interest. At last, we 
use the union of IA and IB from the hypotheses with least 
error as the estimation of total information I. 

 
4. Data Classification 
 

Our PVIF framework takes advantage of the 
intersection parts among datasets extracted from multiple 
sensors. So it is important to know how much intersection 
there are in the provided datasets quantitatively.  We  
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Fig. 2. “pounding-and-inferring” algorithm for 3D 
model based on sets of information from two 
techniques A and B 
 
propose several metrics, such as intersection degree, 
exposition ratio and inferring confidence, etc., to tell the 
quality of our data for fusion visualization. In the 
following section, I will use an example to explain how 
these metrics are to be used. 

For example, if we have a sample datasets which 
contains 2 sets of data from every instrument among 
LSCM, XPS and AFM. An external reference is used to 
locate the shooting area for all datasets in an experiment. 
The spatial relationship among these datasets is illustrated 
in figure 3. 
 
4.1. Intersection degree 
 

We describe intersection degree as percentages of the 
zones on the surface, which are covered by one dataset, 
two datasets, …, and all datasets in sample, over the total 
surface area shot by all instruments. From spatial 

relationship illustrated in figure 3, we know some pixels 
on the surface of object of interest are located in one 
dataset; some are in two datasets, etc. We call it degree of 
pixel. If only one dataset owns a certain pixel, then its 
degree is 1; two datasets own it, then its degree is 2. The 
biggest degree value for any pixel is the number of 
datasets. We can count the degree of all pixels of our 
datasets. After this, we can obtain the pixel number with 
each different degree value in the datasets. Then the 
percentages of each degree are calculated by the pixel 
number of each degree over the total pixel number. The 
sample result are illustrated one the bottom of figure 3. 
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Fig. 3. top: The spatial locations of all datasets in 
a liquid crystal experiment. Cyan color: XPS data; 
Blue: LSCM data; Green: AFM data. bottom: 
intersection degree. 
 
4.2. Exposition ratio and inferring confidence 
 

Exposition ratio (ER) is defined as the ratio of the 
union of a certain number of datasets to the sum of these 
datasets, while inferring confidence (IC) is the ratio of the 
intersection a certain number of datasets to the sum of 
these datasets.  

ER = (I1 u I2 u … u Im) / (I1 + I2 + … + Im); …(5) 
IC = (I1 n I2 n … n Im) / (I1 + I2 + … + Im); …(6) 
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Before we can calculate exposition ratio and inferring 
confidence using formula 5 and 6, there is one problem. It 
is how we are going to calculate the information quantity 
in a dataset. Our solution is to use the total shooting area 
as the information in a dataset: 

I = ∑
i

iArea  …(7) 

For example, the shooting area is 123 x 185 microns and 
there are 35 images in our LSCM dataset. So the 
information in the dataset should be 123*185*35, i.e. 
7.96e+5.  

So it is easy to calculate exposition ratio and inferring 
confidence using our definitions and our dataset 
information in table 2. For example, if we want to 
calculate ER and IC between XPS1 and XPS2. First we 
obtain the sum of Ixps1 and Ixps2. It is 2 *(2*(200*200)), i.e. 
1.6e+5. Then intersection information of Ixps1 and Ixps2 is 
2*9,000, i.e.1.8e+4. Therefore the union information of 
these two datasets is the difference between 1.6e+5 and 
1.8e+4, i.e. 1.42e+5. 
 
5. System Architecture and Working Process 
 

The architecture of our shell system is illustrated in 
figure 4. The shell is composed of such components as 
task controller, flowchart object store and some other 
functional parts, such as flowchart designer, data 
combiner, information verifier etc. Task controller works 
as a central control manager. It controls the state of our 
program and coordinates the work of the functional parts. 
Its work includes deletion of a flowchart object from the 
flowchart store, let the flowchart designer insert a 
flowchart object into the store according to the 
requirement of the user, injection of input data through the 
data combiner, declaration and definition of filters and 
algorithms through filter/algorithm combiner, verification 
of information in the flowchart object through verifer and 
driving the transformation engine to process the data 
following the controls in flowchart object and generating 
the final model. The flowchart object store is used to store 
all the information about data and operations what will be 
applied on the data. Information transformation engine 
drives the input data through the control of the flowchart 
and generate 3D results. Also, hypothesis refinement can 
be done by this component. 

 

 
Fig. 4. System architecture 

 
There are total 5 phases to run the whole process: 

design phase, name-binding phase, parameter-binding 
phase, verification phase and run phase. During design 
phase, a flowchart object can be designed by using 
flowchart designer. There are two kinds of flowchart 
object in the project: one is to take 2D experimental data 
as input and generate a 3D model; another is to take 3D 
models, which are generated by some flowchart object 
before, as input and generate the fusion 3D object or 
comparison between two 3D models. During name 
Binding Phase, we declare filters and algorithms. Another 
important thing in this phase is to bind experiment method 
and image data. During parameter Binding Phase, we set 
parameters for each filter and algorithm declared in the 
current flowchart object. During verification Phase, all 
those input information need to be verified before the data 
are to be transformed following the datapath defined by 
the flowchart object. During run Phase, a new 3D model 
will be created from 2D or 3D data. This model will be 
displayed in a separate window for further visualization. In 
this phase, user can also make parameters of filters and 
algorithms change on the fly in order to get a content 
result. These changes will be flush back to the flowchart 
aggregation component when the user pushes a button in 
the 3D model presentation window. 
 
6. Case Study 
 

We visualize the fused information about liquid crystal 
polymeric film, which was collected by using XPS and 
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LSCM [5,6]. The polymeric film is 2 microns thick and 
composed of two non-equally distributed polymers: PVC 
and PMMA. In XPS, only top and bottom surface with 
0.01 microns thick into film have contribution to top 
image and bottom image of 265 by 265 pixels 
respectively. The dimension of the shot area is 700 by 700 
microns. We also know that the highest pixel intensity in 
the image corresponds to 35 percent PVC and the lowest 
pixel intensity is to 5 percent PVC. LSCM generates 32 
images of 600 by 800 pixels in this example. The shot area 
is 300 by 400 microns. The first and last LSCM images 
are in the depth 0.2 microns to the surface of the film. The 
highest pixel intensity in the fourth image corresponds to 
70 percent PVC and the lowest pixel intensity of the same 
image is to 20 percent PVC. Also, we are ensured that the 
shot area in XPS is partially overlapped with that in 
LSCM. Now our task is to visualize the fusion information 
based on data from XPS and LSCM. Also, we let user 
choose theoretic model to fill space in between XPS top 
and bottom images and then compare them with fusion 
model. Thus, user can obtain a proposed theoretic model, 
which is closest to experimental data.  

Our system is used to process the input XPS and LSCM 
datasets. First, we design two flowchart objects to process 
XPS and LSCM datasets respectively. These two 
flowchart objects should adjust the resolution, image 
dimension, concentration mapping, etc., in order to let 
them match for fusion. After 3D models of each sensor 
domain are generated, we fused them to form a combined 
3D model. And we also use 3D in-filling algorithms to fill 
the space between XPS images to form several theoretic 
3D models. Then comparison metrics are calculated and 
the best proposed 3D structure of material is decided. 

 
 

 
 

 
Fig. 5. Result images. Top: the stack of result 
images by combining XPS data and LSCM data in 
3D presentation. We put the top image of XPS on 
the top of 1st image of LSCM and the bottom 
image of XPS under the last image of LSCM. 
Middle:  the difference between theoretic model 1 
and fusion model. MAE: 119.3, SNR: 129.8. 
Bottom: the difference between theoretic model 2 
and fusion model. MAE = 87.3; SNR = 99.0 
 

The result of our example is illustrated in the attached 
figures. In figure 5, a fused 3D model of XPS and LSCM 
is illustrated. We put XPS top image on the top of the 1st 
image of LSCM image stack and XPS bottom image at the 
bottom of the last image of LSCM image stack to form a 
composite 3D model based on these two techniques. Also, 
we use linear insertion algorithm insert 30 images between 
top image and bottom image of XPS datasets. Thus both 
datasets have the same number of images. After using all 
filters, they also have the same resolution, dimension and 
been well registered. So we use our comparison metrics, 
MAE and SNR, to compare these two 3D models. The 
results are: MAE = 119.3; SNR = 129.8. The comparison 
results are illustrated in figure 5. We also use another 
different formula to fill the space in between the top and 
bottom image: 2*topPixel*x+botPixel*(1-x). Comparison 
between the new 3D XPS model and LSCM model is 
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calculated: MAE = 87.3; SNR = 99.0. So according to 
MAE and SNR, the second in-filling function generates a 
result closer to LSCM. The results are illustrated in figure 
5. 

From the above case study, we see our system can 
generate a fused and theoretic 3D model based on a set of 
experimental data and user-defined algorithms. The user 
might propose different theoretic 3D models and compare 
these theoretic models with real experimental data. Thus 
the best theoretic model of chemical structure of the 
material of interest could be chosen from the proposals 
based on the comparison metrics. 
 
7. Conclusion 
 

In this paper, we propose Polymorphic Visual 
Information Fusion (PVIF) Model to infer estimation of 
total information of the object of interest based on partial 
information from multiple instruments, and implement an 
integrated system for automating to fuse the partial 
information and compare different 3D models to refine the 
best operations for a certain dataset and testify the validity 
of a theoretic 3D model. Our system can be used as a tool 
for chemists and physicists to explore the structure of a 
material.  

There are still a lot of interesting and complicated 
issues which would need more attention. Among these 
difficulties, 2D/3D registration algorithm itself is a 
challenge in image processing; how to find a good 3D 
comparison metric is also interesting; how to describe a 
proposed 3D model is not an easy job. Rendering speed 
problem is also important in the fields of image processing 
and graphics. The work has been supported by National 
Science Foundation (NSF) Grant NSF-0113724. 
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