

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 311

Delay and Jitter Minimization in High
Performance Internet Computing

Javed I. Khan & Seung S. Yang

Media Communications and Networking Research Laboratory
Department of Computer Science, Kent State University

javed|syang@kent.edu

Abstract. Delay and jitter management in high performance active computation
is a challenging problem in the emerging area of internet computing. The
problem takes a complex new form from its classical counterpart. Here
processing time becomes a major part of transit delay dynamics. Also the
concept of path ‘bandwidth’ a classical notion used extensively in classical
networking, now degenerates as data volume can change while in transit. The
paper presents a dynamic feedback based scheme for this problem with a live
internet computing based video transcoder experiment.

1 Introduction

The Internet and particularly the Web is increasingly becoming ‘active’. Several
paradigms, though emerging from widely different origin, are already underway
which are looking for more efficient means for performing active computations with
in a network, where the Internet is viewed not only as a large network but also as a
confederated platform for integrated computing and communication. The spectrum
ranges from grid networking, web-based meta-computing, content services
networking, active and programmable networks, sensor computing to the very recent
automatic computing [4]. In one end of the spectrum, the Grid initiative is exploring
technology so that distributed idle cycles of massive number of computers, including
supercomputers, in the Internet can be used to perform advanced scientific tasks [10].
In the context of internet computation, a frequently appearing model of computation
is Active Information Streaming (AIS). AIS consider how a passing data stream can be
arbitrarily processed while in transit. This data stream does not have to be
conventional video or audio stream. Recently, we are investing on various issues
related to AIS. Just like the current HTML based adaptation services, wide range of
active services can be potentially built for streamed information ranging from channel
multiplexing/ de-multiplexing, distributed simulation, remote visualization, automatic
rate adaptation, sensor data flow aggregation, to security filtering etc. conforming to
AIS model. A particularly interesting problem in AIS is the management of temporal
stream characteristics. The problem is quite different and far more challenging from
its counterpart in classical networks (we will explain the differences shortly). We
believe that it will be a central concern in high performance networked computing
irrespective of the framework. This will be a major and central concern for time
sensitive application processing, including live simulation, distributed visualization,

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 312

live processing of sensor data, instrument control besides media streaming.
Interestingly, also many other application processing, which are not normally known
to be time sensitive-- may turn into one. The new variability introduced by uncertain
compute resources available over a loosely federated resource pool can seriously
destabilize synchronization, load balancing, and utilization efficiency of known
distributed solutions. In this paper we present a jitter and delay control model for AIS
including sharing results from a live experiments on an implemented concept system.
We have conducted live video experiments on the recently launched ABONE test bed
using a novel video transcoding system called MPEG-2 Active Video Streaming
(AVIS) transport [5]. AVIS has been designed for arbitrary transformation (or
filtering) of a passing video and can be used by any server/player application as a
socket like transport. A particularly novel aspect of AVIS is that its processing
capable components can utilize multiple processing capable junctions in the pathway
to perform the required computation. The video stream can receive arbitrary
transformation in a distribute manner in various processing capable nodes over an
‘active’ subnet while the packets diffuse via multiple paths by cooperative
transcoding. Compared to the previous works in jitter and delay control (see [1], [2],
[3], [6], [7], [8]) this paper addresses the problem with respect to joint communication
and computation delay. No previous work could be found to address this problem.
Active streaming adds three new distinct challenges. First, even in a real network
environment, it is difficult to obtain the source traffic model. In active paradigm,
network computation adds additional set of complex variability. All network nodes do
not have same processing capability. The processing time can vary for different
contents and for degree of customization. Secondly, the initial data can dramatically
alter in size and time spacing at each stage of servicing. The capsule data unit can be
of unequal size. All packets are not uniformly needed by the service capsules.
Thirdly, also there is effect of non sequential access. Some of the packets should be
used at the same time by the service module, while some others may not be accessed
at all. In this paper, we demonstrate a joint buffering and scheduling based algorithm
which corrects both computation and transmission difference to reduce the jitter.

2 Active Stream Computation Model

2.1 Graph Time Computing

We first present the framework called Graph Time Computing Model. A stream
transformation occurs in one or more processing capable subnet in a path between the
source and the sink. The processing of a flow involves an ordered set of
transformations on a series of application data units (ADU) via a series of sub-task
modules. In this processing capable subnet the application data units can spread into
multiple processing capable nodes. The spread occurs to overcome the resource
limitation, whether it is the scarcity of available compute cycle on a single node or of
bandwidth in an involved pathway. We call the point where the flow enters this
subnet as GT-fork and the point where it exits the subnet as GT-joint. Series nodes are
called GT-connect. Any AIS layout can be decomposed in terms of these basic
connection components. Graph in Fig-1 shows a two level recursive factored graph.

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 313

2.2 Flow & Service Model

In active system, the size and
representation of ADU is no
longer a fixed quantity rather it
can vary between the active
hops due to active
transformation. Each ADU
must pass through the service
sub-task modules in same pre-
specified order irrespective of
the sub-path it takes. We will denote the g-th ADU after the sub-task M as ADUM

g.
An active stream processing involves a service, a processing capable subnet platform
and a session flow. A service (A) is characterized by a sequence of sub-task module
and their dependency graph <A={ai}>, with nodes representing the sub-tasks. The
processing capable subnet is characterized by a graph <N(V, L, C)>, where vi is the
processing capable node, lij are the overlay links and C is the capacity metric. In C
each link has a bandwidth attribute Bij bytes/sec and each node has a compute power
attribute Bi flops. A session is modeled with a source flow rate <F> bytes/second. It
is the size of ADUs at the source. Each of the process stages ai is modeled using its
computational and outflow requirements per unit of inflow respectively denoted by ri

c
flops/bps and ri

d bytes/byte. If bs bps is the rate at which ADUs are arriving, then ri
c.bs

flops is the required computational power and ri
d.bs bps is the outflow. We assume

that the ratios are also applicable of the ADUs.

3 Description of the Test Application

3.1 AVIS Transport

The Active VIdeo
Streaming (AVIS)
system appears as a
custom transport
between a video
server and a set of
receiver end-points. It
is capable of arbitrary
transformation of an
MPEG-2 ISO-13818
video stream. The
transcoder operates using the compute power of a node (or multiple nodes) in the
stream’s logical pathway. For this test scenario we demonstrate network embedded
rate transformation with adaptive behavior at two levels. In the first level, it adapts
video rate based on the available link local bandwidth. In the second level it also
adapts with respect to the dynamic variation in available compute power in nodes.

Active Network
Trusted Code Server

Viewer

Media
Server

Channel Manager Loading modules Active Network EE
Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC NOS

EE Kent
VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

Active Network
Trusted Code Server

Active Network
Trusted Code Server

ViewerViewer

Media
Server
Media
Server

Channel ManagerChannel Manager Loading modules Active Network EE
Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command
Loading modules Active Network EE

Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC NOS

EE Kent
VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

Fig. 2. AVIS system service model

Active Network
Trusted Code Server

Viewer

Media
Server

Channel Manager Loading modules Active Network EE
Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC NOS

EE Kent
VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

Active Network
Trusted Code Server

Active Network
Trusted Code Server

ViewerViewer

Media
Server
Media
Server

Channel ManagerChannel Manager Loading modules Active Network EE
Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command
Loading modules Active Network EE

Active Router
Legacy Router

Active ApplicationReceiving Information/
Sending Command

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC

NOS
EE Kent

VSM/VEE

Active
Apps. X-DEC NOS

EE Kent
VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-ENC

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

NOS
EE Kent

VSM/VEE

Active
Apps. X-MUX

Fig. 2. AVIS system service model

+

+

(b) GT-connector

(c) GT-fork

(d) GT-joint

+

(a) GT-processing node

+

+++

+
+
+

+

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+

+ +

+ +

+

+

+ +

+ +

+

+

+

+

+

+

+

+ + + +

+

+

Fig-1 Graph Time based decomposition

+

+

(b) GT-connector

(c) GT-fork

(d) GT-joint

+

(a) GT-processing node

+

+++

+
+
+

+

+

(b) GT-connector

(c) GT-fork

(d) GT-joint

+

(a) GT-processing node

+

+++

+
+
+

+

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+

+ +

+ +

+

+

+ +

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+

+ +

+ +

+

+

+ +

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+ +

+

+

+

+

+

+

+

+ + + +

+

+

+

+

+ +

+ +

+

+

+ +

+ +

+

+

+

+

+

+

+

+ + + +

+

+

Fig-1 Graph Time based decomposition

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 314

3.2 Architecture of the Test Bed Application

For flexible deployment, AVIS have been designed with modular processing
components. Also, the most computation intensive tasks can be performed dividedly
in multiple nodes. It has three principle worker capsules (i) X-DEC (GT-fork), (ii) X-
ENC (processing node) and (iii) X-MUX (GT-joint) [5]. Besides, it also has a service
control capsule called AVIS-Manager. An X-DEC module decodes an input video
stream to decoded frame images and schedule to distribute among processing paths.
An X-ENC module receives decoded frame images and produces a GOP-ed encoding
video stream slice. An X-MUX, is used for guaranteeing the transcoded stream is in
sequence. Given the end-points and a network map, with an AVIS transport, the
modules X-DEC, X-ENC, and X-MUX are logically connected in a pipe. A particular
deployment may have more than one X-ENC between X-DEC, and X-MUX. Because
of the heterogeneous of network environment, some X-ENCs are expected to run on
high performance node, while the others on low powered one. The variation in the (i)
active processor speed, (ii) the CPU load in the processors from other active
processing, and (ii) the difference and variation on the network link/bandwidth in
each path from X-DEC to X-MUX via one of X-ENC causes the variance in delay.

3.3 AVIS on ABONE

Active VIdeo Streaming (AVIS) system runs on ABONE system using the Kent
VSM/VEE execution environment. ABONE is an operational network and provides
an Internet wide network of routing as well as processing capable nodes. The Kent
VSM/VEE supports object oriented dynamic module management via dynamic
loading and unloading of a service composed as a collection of modules, transfer of
service configuration scripts, and log files.

4 Jitter Control

4.1 Multipath Jitter Model

First, we will explain the notation. For denoting the delays we use the following
two level notations. We use subscripts to refer to the ADU’s sequence number (g) and
the path number (p). Each ADU is processed by a set of sub-task modules (M). There
can be multiple instances of a module. Each sub-path should have a copy of each
module. Also, for some services (such as tree-transcoding in a multicast distribution
scenario [9]) a stream can encounter multiple services with recurrence of the whole
set of transformations. Modules are ordered and have a stage index. Thus, in the
superscript each module M is identified with its stage index (i), service number (s)
and the sub-path number (sp) within this service. Thus, let g, p, sp, s denotes
respectively the g-th ADU, path number, sub-path number, module name, and the

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 315

delay stages in a service. Then the delay experienced by an ADU along a path p can
be expressed as:

()∑=
M

m

sspim
pgpg dD),,(

,, (1a)

For example the transcoding service is defined by the sub-task processing stages
},,{ TPFA⊆ . Where, F, P, T respectively represents the computation delays in the

fork, connect and joint units. Their orders are 1,2 and 3 respectively. Thus the total
delay stages include the communication delays as well:

},,,,{ TptPfpFM ⊆

Here, fp and pt represent the communication delays in the first and second stages
respectively. Thus the objective of the proposed algorithm is to reduce the variation in
inter-departure time from the joint defined by (1b):

∑ −−=
Stream

g
pgpg DDJ ,1,

 (1b)

The computation delay of each module can be shown as in (2).
ii

c
isspia

pg Bred /),,(
, ×= (2)

Here, ei is the input ADU size in bits, ri
c is a computation needed for the module in

flops per input bits. Bi is the processing power on the node allocated to the service in
units of flops. The change in size after the stream flows via a processing capable
module is represented by a stage expansion factor. The size after the i-th stage is thus:

∏
=

×=
i

j

ji rIf
0

 (3)

Let fi is an output and I is an initial input stream size and ri is a stage expansion
factor or output bits per input bits of a stage i. Their relation is shown in (4)

iii fer =× (4)

We can get delay in a link as shown in (5).
ijisspiij

pg Bfd /),,(
, = (5)

Here, fi is an output stream size as seen in (3) while Bij is a bandwidth of link i.

4.2 Algorithm

4.2.1 Scheduling
Given the streaming rate (R) the algorithm estimates a relative target arrival time
(Tg) at the destination for each ADU. A quantity maximum allowed delay is estimated
for each ADU based on this deadline. The algorithm chooses a least weighted time

Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322

 316

path among the paths which has predicted delay less than maximum allowed delay.
When there are multiple conforming sub-paths, the weighted time is a time based on
the average delay time and the delay variation of the sub-path. If no sub-path could
process a given ADU within the deadline for it, then the least delay time sub-path is
chosen without considering the variations. At the start of the flow, the average delay
is initialized to the lowest possible delay of the path and the delay variation is
initialized to zero. The joint gathers individual delays and delay variations from each
sub-path and informs the values to the scheduler in fork for subsequent updates.

4.2.2 Delay Estimation
An expected sub-path delay is the sum of (i) expected delay of transmission from fork
to the first sub-path processor, (ii) sub-path processing, and (iii) transmission time
from last sub-path processor to the joint. The following equation is used for deriving
expected delays along each sub-path:

),,1(
,

),,1(
,

),,(
,

),,(
,

~~~~ sspipt
pg

sspiP
pg

sspifp
pg

sspisp
pg dddd ++ ++=  (6) 

Links Capacity Estimate: As seen in (5), ),,(
,

~ sspifp
pgd  and ),,1(

,
~ sspipt

pgd + can be predicted 
based on fi and Bij, but fi and Bij may vary because of several reasons. The actual 
compression on each ADU can vary from the ideal compression ratio. The network 
activities on a link may cause different Bij values from time to time. So, each of the 
nodes in a sub flow including the joint estimates the average. 

),,(
,

),,(
,

~/~~ sspiij
pg

isspiij
pg Bed =  (7) 

The bandwidth for each incoming link is approximated by each receiving node, 
including the fork node, using the method shown in (8). 

))1((1~ ),,(
),1(

),,(
),2(

),,(
,

sspiij
pkg

sspiij
pkg

sspiij
pg BkB

k
B −− +−×=  (8) 

Here k is the number of ADUs which arrived at the receiver node or arrived at the 
joint using sub-path sp. The g(k) is a k-th ADU number which passed through the 
sub-path sp. The join estimates the quantity separately for each incoming flow. If the 
path has no history then last known or initially known bandwidth is used.  The right 
hand side quantities of the equation are observed bandwidth at the joint not 
prediction.  
Processing Capacity Estimate: Similar to the transmission delay, the module delay 
can also be different from the ideal expected value.  Thus, averages is: 

),,(
,

),,(
),1(

),,(
),2(),,(

,

)1(~ sspia
pg

i
sspia
pkg

sspia
pkgsspia

pg Qe
k

dkd
d +×

+−×
= −−  (9) 

Equation (9) is for delay of a module a (a⊆A). It is derived from the average delay 
per bit observed on the previous ADU’s on the sub-path sp and the current input ADU 
size, ei. Also, in each module, it has a queuing delay, ),,(

,
sspia

pgQ . In Internet computing 
all the modules do not operate in identical speed. Each processing module thus 



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  317

maintains an incoming queue of unprocessed ADUs. For AVIS there is negligible 
queuing delay on the decoder. It is relatively fast comparing with encoding speed. The 
encoder’s queuing delay is given to equation (10). 

node.the  in scheduled ADU unstartedW

sppath -sub in encoder in c, ADU, encoding current oftime  Start

time Current

sppath -sub in encoder in c, ADU, encoding current of delay expected

=

=

=

+−−= ∑
∈

),,(

),,(
,

),,(
,

),,(),,(
,

),,(
,

:~

~)(~
W

sspiP
s

c

sspiP
pc

w

sspiP
pw

sspiP
sc

sspiP
pc

sspiP
pg

T

T

d

dTTdQ

 (10) 

The delay variations of sub-paths are used to select a proper sub-path for a given 
ADU. Its use provides the worst expected delay time in each path and thus can help in 
selecting reliable path. Equations (11) and (12) are used to track delay variation. 

1

~)(
)(

),,(
,

),,(
),(),,(

, +

+×
=

k
dkdAvr

dAvr
sspisp

pg
sspisp

pkgsspisp
pg

 (11) 

1

)()(
)(

),,(
,

),,(
,

),,(
),(),,(

,

~

+

−+×
=

k

dAvrk
dVar

sspisp
pg

sspisp
pg

sspisp
pkgsspisp

pg

ddVar  (12) 

5 Experiment Results 

In test environment, we used total five ABONE nodes, each machines running 
RedHat Linux 7.1. The nodes received authenticated transcoding service modules 
from a code server located at KSU Medianet Lab. Those are run on Athlon 1.4GHz, 
Athlon XP 1700+, and dual Pentium III 450MHz machines. The deployment, 
management and monitoring process was automatic and adaptive. Selected nodes 
have different computation powers to make sure that paths have different delay 
variations in transcoding a video stream. The selected source video streams have 
identical contents but were initially encoded with different frame and GOP size. There 
was dynamic variation on the node and link capacities since there were also other 
activities on the processing capable ABONE nodes.  

5.1 Jitter & Delay Reduction  

The fig. 3(a) plots the jitter performance for both with and without the technique. It 
shows the result of frame size 320x240. The x-axis is the GOP number in the video 
stream and y-axis are delay jitter in seconds. Fig. 3(b) shows the result of frame size 
704x480. As seen delay jitters are reduced dramatically with the control scheduling. 
First few GOPs have more delay jitter variations because the scheduler doesn’t know 
proper initial delays of each path. After some time, however, the scheduler adapts. A 
bigger GOP causes more delay jitter. This is caused by transcoding method. The 
encoders start only after all needed decoded video data has arrived. So, a bigger GOP 
size causes larger wait. Also, a bigger GOP needs more transcoding time than smaller 
GOP. It magnifies the delay jitter variation of delay. If the encoders can start before 



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  318

all needed video data is transferred to it, it will reduce delay jitter more. Also, the 
bigger frame stream has larger delay jitter variations because of the same reasons. 

Fig-3 Video Stream Jitter Measurement 

5.2 Cold Start Adaptation 

Fig. 4 shows the frame-
rate observed in their sample 
run on a small uncontrolled 
processing capable network, 
i.e. with background 
computational and 
communication load. We let 
the system auto deploy itself 
and find optimum mapping. 
It plots the performance for both 320x240 and 704x480 frame sizes streams at three 
different GOP sizes. The computation load heavily depends on the number of macro-
blocks or frame size. Based on the frame size the frame transcoding rate varied from 
30-5 frames/second. The adaptive behavior is noticeable at the step like increments at 
the beginning. Initially the channel used only one processing capable node. The single 
node was unable to sustain the target rate. Soon, it auto-deploys additional nodes.  

5.3 System Deployment and Signaling Overhead 

We run the system in three test bed scenarios. In the first scenario, the application 
as well as the AVIS components-- all were deployed in a single Autonomous 
System’s LAN. In the second scenario the application end points (server and players) 
were in different networks but AVIS computation was performed in a single network. 
In the third setup application as well as each AVIS component were in distinct. The 
corresponding module deployment time of each test bed shows in fig. 5(a). The stack 

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparison

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Fig-4 Frame size and computation

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparision

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Performance comparison

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55

GOP No.

Fr
am

e 
pe

r s
ec

on
ds

1 2 3

Number of processors

320x240x9 320x240x15 704x480x9 704x480x15

Fig-4 Frame size and computation

320x240 video stream jitter

-15.000

-10.000

-5.000

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GOP No.

Ji
tte

r (
se

c)

320x240x9 schedule 320x240x15 schedule 320x240x9 No schedule 320x240x15 No schedule

704x480 video stream jitter

-40.000

-20.000

0.000

20.000

40.000

60.000

80.000

100.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

GOP No.

Ji
tte

r (
se

c)

704x480x9 schedule 704x480x9 No schedule

(a) (b)

320x240 video stream jitter

-15.000

-10.000

-5.000

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GOP No.

Ji
tte

r (
se

c)

320x240x9 schedule 320x240x15 schedule 320x240x9 No schedule 320x240x15 No schedule

704x480 video stream jitter

-40.000

-20.000

0.000

20.000

40.000

60.000

80.000

100.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

GOP No.

Ji
tte

r (
se

c)

704x480x9 schedule 704x480x9 No schedule

(a) (b)



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  319

show how much time was taken by individual components of the system. In all three 
scenarios the total module deployment took about 1.2 seconds. It includes 
authentication, automatic module transfer and their activation. The entire 
synchronization was performed by inter modules signals. Clearly a concern was to 
how much communication resource was consumed by this. The signaling overhead is 
plotted in fig. 5(b). It plots individual AVIS components in scenario. For comparison 
the second bar also shows the actual ADU data volume. Relatively small network 
resources are used for achieving coordination and controlling among the modules. 

 

20

15.4

29.1

28.6

30.7

18.6
15.1

27.9

27.3

30.1

18.9
14.9

28.4

28

29.7

0

20

40

60

80

100

120

140

Ti
m

e 
(m

s)

testbed 1 testbed 2 testbed 3

Module Deployment Time

 Enc3
 Enc2
 Enc1
 Mux
Dec

123.8 119.0 119.9

1

10

100

1000

10000

100000

Ti
m

e 
(m

s)
Control
Signals

Data Control
Signals

Data Control
Signals

Data

Test bed 1 Test bed 2 Test bed 3

Control signal vs. Data transfer time

X-MUX
X-ENC
X-DEC
CM

573

75921

345

62819

380

63103

(a) (b)

20

15.4

29.1

28.6

30.7

18.6
15.1

27.9

27.3

30.1

18.9
14.9

28.4

28

29.7

0

20

40

60

80

100

120

140

Ti
m

e 
(m

s)

testbed 1 testbed 2 testbed 3

Module Deployment Time

 Enc3
 Enc2
 Enc1
 Mux
Dec

123.8 119.0 119.9

1

10

100

1000

10000

100000

Ti
m

e 
(m

s)
Control
Signals

Data Control
Signals

Data Control
Signals

Data

Test bed 1 Test bed 2 Test bed 3

Control signal vs. Data transfer time

X-MUX
X-ENC
X-DEC
CM

573

75921

345

62819

380

63103

(a) (b)
 

Fig-5 AVIS System Deployment and Signaling Overhead 

5.4 Adaptation Performance 

Whenever there is a change in the network condition/ capacity the adaptive system 
responds.  The AVIS system offers two forms of adaptation. The first is with the 
processing capable nodes and their computing powers.  Here we provide an 
experiment on this (as it involves module reallocation) and emulated incremental 
allocation of additional CPU power in the processing capable nodes into the system in 
three steps (events T1, T2 and T3) by changing the target frame rate of the AVIS 
system. The corresponding change in X-MUX buffers throughput frame rate (FPS) 
observed in the X-MUX unit is shown in fig. 6. It also shows the reaction time. More 
computation power gave more 
performance boost as 
expected. However, he first 
effects of the events on the 
throughput were reflected in 
about 1.5 to 2.2 seconds. It 
took little more time before the 
full effects took place. 

6 Conclusions  

It is interesting to note that the 
prominent target applications in the network computing paradigms (like grid 
computing, sensor computing or active networking) targets time sensitive systems 

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

Fig-6 FPS adaptation reaction time

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

FPS adaptation time

0

5

10

15

20

25

30

35

40

45

50

47
85

7
49

67
1

52
52

9
55

31
0

57
33

7
58

55
8

59
86

2
60

61
2

61
54

0
62

64
0

63
29

6
64

28
9

65
24

9
66

15
3

66
86

3
67

85
2

68
71

8
69

69
8

70
90

6
71

51
7

72
40

0

Time (ms)

Fr
am

e 
pe

r s
ec

on
ds

T1 Event T2 Event T3 Event T1 FPS T2 FPS T3 FPS

58
03

8

60
24

0

68
53

0

57
88

7

60
13

3

68
63

4

58
06

4

59
54

4

67
85

2

Fig-6 FPS adaptation reaction time



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  320

such as multimedia, control, or synchronized transactions, where jitter and delay 
management will be a central issue. The scheme we presented seems to be one of the 
first to specifically address the issue.  However, the temporal QoS required by these 
applications will be needed in very specific shades and sensitivities. Along with, it is 
highly unlikely that idealized statistical models (such as assumption of Poisson, 
Fractal, or Normal arrival), blind to applications’, used abundantly in classical 
attempts, may not be very effective in characterizing AIS where flows are being 
deliberately manipulated. Therefore, in the design of next generation network for 
advanced applications it will be of advantage to provision the path scheduling 
decisions at higher levels- perhaps outside of network layers. The lower network 
layers should focus more on providing base network parameters to the higher layers to 
facilitate this decision process. The proposed scheme can be implemented by generic 
application level framing (ALF) with some modification to RTP/ RTCP model. The 
critical decision that provides the QoS actually lies in the scheduling process. It is 
possible a different application (such as one which is interested in hard deadline- than 
jitter) would like to use a different scheduling component in GT-fork. The work has 
been supported by the DARPA Research Grant F30602-99-1-0515. 

References 

 
1. R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statistical service assurances 

for traffic scheduling algorithms. IEEE Journal on Selected Areas in Communications, 
Special Issue on Internet QoS, 2000. 

2. J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley. Online 
Smoothing of Live Variable-Bit-Rate Video. In 7th Workshop Network and Op. Systems 
Support for Digital Audio and Video, pp. 249-257, St. Louis, MO, May 1997. 

3. H. Zhang and D. Ferrari. Rate-Controlled Static-Priority Queueing. In Proceedings of 
IEEE INFOCOM’93, page 227-236, San Francisco, CA, March 1993. 

4. Jeffrey O. Kephart & David Chess, The Vision of Autonomic Computing, IEEE 
Computers, January 2003, pp.41-50.  

5. Javed I. Khan and Seung. S. Yang, A Framework for Building Complex Netcentric 
Systems on Active Network, Procs of the DARPA Active Networks Conference and 
Exposition, DANCE 2002, San Jose, CA May 21-24, 2002, IEEE Computer Society Press. 

6. Donald L. Stone and Kevin Jeffay, An Empirical Study of Delay Jitter Management 
Policies, Multimedia Systems Journal, volume 2, number 6, pp267-279, January 1995. 

7. N. Argiriou and L. Georgiadis, Channel Sharing by Rate-Adaptive Streaming 
Applications, IEEE INFOCOM’02, New York, June 2002. 

8. Jon C. R. Bennett, Kent Benson, Anna Charny, William F. Courtney, Jean-Yves 
LeBoudec, Delay Jitter Bounds and Packet Scale Rate Guarantee for Expedited 
Forwarding, IEEE INFOCOM’01, Anchorage, Alaska, April 2001. 

9. Seung Yang and Javed I. Khan, Delay and Jitter Minimization in Active Diffusion 
Computing, IEEE Int. Symp. on Applications and the Internet, SAINT 2003, Orlando, 
Florida, January 2003. 

10. D. Reed, Grids, the Teragrid, and Beyond, IEEE Computers, January 2003, pp.62-68.  



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  321

 


