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Abstract. Delay and jitter management in high performance active computation 
is a challenging problem in the emerging area of internet computing. The 
problem takes a complex new form from its classical counterpart. Here 
processing time becomes a major part of transit delay dynamics. Also the 
concept of path ‘bandwidth’ a classical notion used extensively in classical 
networking, now degenerates as data volume can change while in transit. The 
paper presents a dynamic feedback based scheme for this problem with a live 
internet computing based video transcoder experiment. 

1 Introduction 

The Internet and particularly the Web is increasingly becoming ‘active’. Several 
paradigms, though emerging from widely different origin, are already underway 
which are looking for more efficient means for performing active computations with 
in a network, where the Internet is viewed not only as a large network but also as a 
confederated platform for integrated computing and communication. The spectrum 
ranges from grid networking, web-based meta-computing, content services 
networking, active and programmable networks, sensor computing to the very recent 
automatic computing [4]. In one end of the spectrum, the Grid initiative is exploring 
technology so that distributed idle cycles of massive number of computers, including 
supercomputers, in the Internet can be used to perform advanced scientific tasks [10]. 
In the context of internet computation, a frequently appearing model of computation 
is Active Information Streaming (AIS). AIS consider how a passing data stream can be 
arbitrarily processed while in transit. This data stream does not have to be 
conventional video or audio stream. Recently, we are investing on various issues 
related to AIS. Just like the current HTML based adaptation services, wide range of 
active services can be potentially built for streamed information ranging from channel 
multiplexing/ de-multiplexing, distributed simulation, remote visualization, automatic 
rate adaptation, sensor data flow aggregation, to security filtering etc. conforming to 
AIS model.  A particularly interesting problem in AIS is the management of temporal 
stream characteristics.  The problem is quite different and far more challenging from 
its counterpart in classical networks (we will explain the differences shortly). We 
believe that it will be a central concern in high performance networked computing 
irrespective of the framework. This will be a major and central concern for time 
sensitive application processing, including live simulation, distributed visualization, 



 
Published in the Proceedings of the IEEE/ACM/IFIP International Conference on High Performance 
Computing, HiPC2003, Hyderabad, India, December 2003, pp.311-322 

  312

live processing of sensor data, instrument control besides media streaming. 
Interestingly, also many other application processing, which are not normally known 
to be time sensitive-- may turn into one. The new variability introduced by uncertain 
compute resources available over a loosely federated resource pool can seriously 
destabilize synchronization, load balancing, and utilization efficiency of known 
distributed solutions. In this paper we present a jitter and delay control model for AIS 
including sharing results from a live experiments on an implemented concept system. 
We have conducted live video experiments on the recently launched ABONE test bed 
using a novel video transcoding system called MPEG-2 Active Video Streaming 
(AVIS) transport [5]. AVIS has been designed for arbitrary transformation (or 
filtering) of a passing video and can be used by any server/player application as a 
socket like transport. A particularly novel aspect of AVIS is that its processing 
capable components can utilize multiple processing capable junctions in the pathway 
to perform the required computation.  The video stream can receive arbitrary 
transformation in a distribute manner in various processing capable nodes over an 
‘active’ subnet while the packets diffuse via multiple paths by cooperative 
transcoding.  Compared to the previous works in jitter and delay control (see [1], [2], 
[3], [6], [7], [8]) this paper addresses the problem with respect to joint communication 
and computation delay. No previous work could be found to address this problem. 
Active streaming adds three new distinct challenges. First, even in a real network 
environment, it is difficult to obtain the source traffic model. In active paradigm, 
network computation adds additional set of complex variability. All network nodes do 
not have same processing capability. The processing time can vary for different 
contents and for degree of customization. Secondly, the initial data can dramatically 
alter in size and time spacing at each stage of servicing. The capsule data unit can be 
of unequal size. All packets are not uniformly needed by the service capsules. 
Thirdly, also there is effect of non sequential access. Some of the packets should be 
used at the same time by the service module, while some others may not be accessed 
at all. In this paper, we demonstrate a joint buffering and scheduling based algorithm 
which corrects both computation and transmission difference to reduce the jitter. 

2 Active Stream Computation Model 

2.1 Graph Time Computing  

We first present the framework called Graph Time Computing Model. A stream 
transformation occurs in one or more processing capable subnet in a path between the 
source and the sink. The processing of a flow involves an ordered set of 
transformations on a series of application data units (ADU) via a series of sub-task 
modules. In this processing capable subnet the application data units can spread into 
multiple processing capable nodes. The spread occurs to overcome the resource 
limitation, whether it is the scarcity of available compute cycle on a single node or of 
bandwidth in an involved pathway.  We call the point where the flow enters this 
subnet as GT-fork and the point where it exits the subnet as GT-joint. Series nodes are 
called GT-connect. Any AIS layout can be decomposed in terms of these basic 
connection components. Graph in Fig-1 shows a two level recursive factored graph. 
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2.2 Flow & Service Model 

In active system, the size and 
representation of ADU is no 
longer a fixed quantity rather it 
can vary between the active 
hops due to active 
transformation. Each ADU 
must pass through the service 
sub-task modules in same pre-
specified order irrespective of 
the sub-path it takes. We will denote the g-th ADU after the sub-task M as ADUM 

g. 
An active stream processing involves a service, a processing capable subnet platform 
and a session flow. A service (A) is characterized by a sequence of sub-task module 
and their dependency graph <A={ai}>, with nodes representing the sub-tasks. The 
processing capable subnet is characterized by a graph <N(V, L, C)>, where vi is the 
processing capable node, lij are the  overlay links and C is the capacity metric. In C 
each link has a bandwidth attribute Bij bytes/sec and each node has a compute power 
attribute Bi flops. A session is modeled with a source flow rate <F> bytes/second. It 
is the size of ADUs at the source. Each of the process stages ai is modeled using its 
computational and outflow requirements per unit of inflow respectively denoted by ri

c 
flops/bps and ri

d bytes/byte. If bs bps is the rate at which ADUs are arriving, then ri
c.bs 

flops is the required computational power and ri
d.bs bps is the outflow. We assume 

that the ratios are also applicable of the ADUs. 

3 Description of the Test Application 

3.1 AVIS Transport 

The Active VIdeo 
Streaming (AVIS) 
system appears as a 
custom transport 
between a video 
server and a set of 
receiver end-points. It 
is capable of arbitrary 
transformation of an 
MPEG-2 ISO-13818 
video stream. The 
transcoder operates using the compute power of a node (or multiple nodes) in the 
stream’s logical pathway. For this test scenario we demonstrate network embedded 
rate transformation with adaptive behavior at two levels. In the first level, it adapts 
video rate based on the available link local bandwidth. In the second level it also 
adapts with respect to the dynamic variation in available compute power in nodes.  
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3.2 Architecture of the Test Bed Application 

For flexible deployment, AVIS have been designed with modular processing 
components. Also, the most computation intensive tasks can be performed dividedly 
in multiple nodes. It has three principle worker capsules (i) X-DEC (GT-fork), (ii) X-
ENC (processing node) and (iii)  X-MUX (GT-joint) [5]. Besides, it also has a service 
control capsule called AVIS-Manager. An X-DEC module decodes an input video 
stream to decoded frame images and schedule to distribute among processing paths. 
An X-ENC module receives decoded frame images and produces a GOP-ed encoding 
video stream slice. An X-MUX, is used for guaranteeing the transcoded stream is in 
sequence. Given the end-points and a network map, with an AVIS transport, the 
modules X-DEC, X-ENC, and X-MUX are logically connected in a pipe. A particular 
deployment may have more than one X-ENC between X-DEC, and X-MUX. Because 
of the heterogeneous of network environment, some X-ENCs are expected to run on 
high performance node, while the others on low powered one.  The variation in the (i) 
active processor speed, (ii) the CPU load in the processors from other active 
processing, and (ii) the difference and variation on the network link/bandwidth in 
each path from X-DEC to X-MUX via one of X-ENC causes the variance in delay.  

3.3  AVIS on ABONE 

Active VIdeo Streaming (AVIS) system runs on ABONE system using the Kent 
VSM/VEE execution environment. ABONE is an operational network and provides 
an Internet wide network of routing as well as processing capable nodes. The Kent 
VSM/VEE supports object oriented dynamic module management via dynamic 
loading and unloading of a service composed as a collection of modules, transfer of 
service configuration scripts, and log files. 

4 Jitter Control 

4.1 Multipath Jitter Model 

First, we will explain the notation. For denoting the delays we use the following 
two level notations. We use subscripts to refer to the ADU’s sequence number (g) and 
the path number (p). Each ADU is processed by a set of sub-task modules (M). There 
can be multiple instances of a module. Each sub-path should have a copy of each 
module. Also, for some services (such as tree-transcoding in a multicast distribution 
scenario [9]) a stream can encounter multiple services with recurrence of the whole 
set of transformations. Modules are ordered and have a stage index. Thus, in the 
superscript each module M is identified with its stage index (i), service number (s) 
and the sub-path number (sp) within this service. Thus, let g, p, sp, s denotes 
respectively the g-th ADU, path number, sub-path number, module name, and the 
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delay stages in a service. Then the delay experienced by an ADU along a path p can 
be expressed as: 

( )∑=
M

m

sspim
pgpg dD ),,(

,,  (1a) 

For example the transcoding service is defined by the sub-task processing stages 
},,{ TPFA⊆ . Where, F, P, T respectively represents the computation delays in the 

fork, connect and joint units. Their orders are 1,2 and 3 respectively. Thus the total 
delay stages include the communication delays as well: 

},,,,{ TptPfpFM ⊆   

Here, fp and pt represent the communication delays in the first and second stages 
respectively. Thus the objective of the proposed algorithm is to reduce the variation in 
inter-departure time from the joint defined by (1b):  

∑ −−=
Stream

g
pgpg DDJ ,1,

 (1b) 

The computation delay of each module can be shown as in (2). 
ii

c
isspia

pg Bred /),,(
, ×=  (2) 

Here, ei is the input ADU size in bits, ri
c is a computation needed for the module in 

flops per input bits. Bi is the processing power on the node allocated to the service in 
units of flops. The change in size after the stream flows via a processing capable 
module is represented by a stage expansion factor. The size after the i-th stage is thus: 

∏
=

×=
i

j

ji rIf
0

 (3) 

Let fi is an output and I is an initial input stream size and ri is a stage expansion 
factor or output bits per input bits of a stage i. Their relation is shown in (4) 

iii fer =×  (4) 

We can get delay in a link as shown in (5). 
ijisspiij

pg Bfd /),,(
, =  (5) 

Here, fi is an output stream size as seen in (3) while Bij is a bandwidth of link i. 

4.2 Algorithm 

4.2.1 Scheduling  
Given the streaming rate (R) the algorithm estimates a relative target arrival time 
(Tg) at the destination for each ADU. A quantity maximum allowed delay is estimated 
for each ADU based on this deadline. The algorithm chooses a least weighted time 
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path among the paths which has predicted delay less than maximum allowed delay. 
When there are multiple conforming sub-paths, the weighted time is a time based on 
the average delay time and the delay variation of the sub-path. If no sub-path could 
process a given ADU within the deadline for it, then the least delay time sub-path is 
chosen without considering the variations.  At the start of the flow, the average delay 
is initialized to the lowest possible delay of the path and the delay variation is 
initialized to zero. The joint gathers individual delays and delay variations from each 
sub-path and informs the values to the scheduler in fork for subsequent updates. 

4.2.2 Delay Estimation 
An expected sub-path delay is the sum of (i) expected delay of transmission from fork 
to the first sub-path processor, (ii) sub-path processing, and (iii) transmission time 
from last sub-path processor to the joint. The following equation is used for deriving 
expected delays along each sub-path: 

),,1(
,

),,1(
,

),,(
,

),,(
,

~~~~ sspipt
pg

sspiP
pg

sspifp
pg

sspisp
pg dddd ++ ++=  (6) 

Links Capacity Estimate: As seen in (5), ),,(
,

~ sspifp
pgd  and ),,1(

,
~ sspipt

pgd + can be predicted 
based on fi and Bij, but fi and Bij may vary because of several reasons. The actual 
compression on each ADU can vary from the ideal compression ratio. The network 
activities on a link may cause different Bij values from time to time. So, each of the 
nodes in a sub flow including the joint estimates the average. 

),,(
,

),,(
,

~/~~ sspiij
pg

isspiij
pg Bed =  (7) 

The bandwidth for each incoming link is approximated by each receiving node, 
including the fork node, using the method shown in (8). 

))1((1~ ),,(
),1(

),,(
),2(

),,(
,

sspiij
pkg

sspiij
pkg

sspiij
pg BkB

k
B −− +−×=  (8) 

Here k is the number of ADUs which arrived at the receiver node or arrived at the 
joint using sub-path sp. The g(k) is a k-th ADU number which passed through the 
sub-path sp. The join estimates the quantity separately for each incoming flow. If the 
path has no history then last known or initially known bandwidth is used.  The right 
hand side quantities of the equation are observed bandwidth at the joint not 
prediction.  
Processing Capacity Estimate: Similar to the transmission delay, the module delay 
can also be different from the ideal expected value.  Thus, averages is: 

),,(
,

),,(
),1(

),,(
),2(),,(

,

)1(~ sspia
pg

i
sspia
pkg

sspia
pkgsspia

pg Qe
k

dkd
d +×

+−×
= −−  (9) 

Equation (9) is for delay of a module a (a⊆A). It is derived from the average delay 
per bit observed on the previous ADU’s on the sub-path sp and the current input ADU 
size, ei. Also, in each module, it has a queuing delay, ),,(

,
sspia

pgQ . In Internet computing 
all the modules do not operate in identical speed. Each processing module thus 
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maintains an incoming queue of unprocessed ADUs. For AVIS there is negligible 
queuing delay on the decoder. It is relatively fast comparing with encoding speed. The 
encoder’s queuing delay is given to equation (10). 

node.the  in scheduled ADU unstartedW

sppath -sub in encoder in c, ADU, encoding current oftime  Start

time Current

sppath -sub in encoder in c, ADU, encoding current of delay expected

=

=

=

+−−= ∑
∈

),,(

),,(
,

),,(
,

),,(),,(
,

),,(
,
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~)(~
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s

c

sspiP
pc

w

sspiP
pw

sspiP
sc

sspiP
pc

sspiP
pg

T

T

d

dTTdQ

 (10) 

The delay variations of sub-paths are used to select a proper sub-path for a given 
ADU. Its use provides the worst expected delay time in each path and thus can help in 
selecting reliable path. Equations (11) and (12) are used to track delay variation. 

1

~)(
)(

),,(
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),,(
),(),,(
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sspisp
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sspisp
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pkgsspisp
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5 Experiment Results 

In test environment, we used total five ABONE nodes, each machines running 
RedHat Linux 7.1. The nodes received authenticated transcoding service modules 
from a code server located at KSU Medianet Lab. Those are run on Athlon 1.4GHz, 
Athlon XP 1700+, and dual Pentium III 450MHz machines. The deployment, 
management and monitoring process was automatic and adaptive. Selected nodes 
have different computation powers to make sure that paths have different delay 
variations in transcoding a video stream. The selected source video streams have 
identical contents but were initially encoded with different frame and GOP size. There 
was dynamic variation on the node and link capacities since there were also other 
activities on the processing capable ABONE nodes.  

5.1 Jitter & Delay Reduction  

The fig. 3(a) plots the jitter performance for both with and without the technique. It 
shows the result of frame size 320x240. The x-axis is the GOP number in the video 
stream and y-axis are delay jitter in seconds. Fig. 3(b) shows the result of frame size 
704x480. As seen delay jitters are reduced dramatically with the control scheduling. 
First few GOPs have more delay jitter variations because the scheduler doesn’t know 
proper initial delays of each path. After some time, however, the scheduler adapts. A 
bigger GOP causes more delay jitter. This is caused by transcoding method. The 
encoders start only after all needed decoded video data has arrived. So, a bigger GOP 
size causes larger wait. Also, a bigger GOP needs more transcoding time than smaller 
GOP. It magnifies the delay jitter variation of delay. If the encoders can start before 
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all needed video data is transferred to it, it will reduce delay jitter more. Also, the 
bigger frame stream has larger delay jitter variations because of the same reasons. 

Fig-3 Video Stream Jitter Measurement 

5.2 Cold Start Adaptation 

Fig. 4 shows the frame-
rate observed in their sample 
run on a small uncontrolled 
processing capable network, 
i.e. with background 
computational and 
communication load. We let 
the system auto deploy itself 
and find optimum mapping. 
It plots the performance for both 320x240 and 704x480 frame sizes streams at three 
different GOP sizes. The computation load heavily depends on the number of macro-
blocks or frame size. Based on the frame size the frame transcoding rate varied from 
30-5 frames/second. The adaptive behavior is noticeable at the step like increments at 
the beginning. Initially the channel used only one processing capable node. The single 
node was unable to sustain the target rate. Soon, it auto-deploys additional nodes.  

5.3 System Deployment and Signaling Overhead 

We run the system in three test bed scenarios. In the first scenario, the application 
as well as the AVIS components-- all were deployed in a single Autonomous 
System’s LAN. In the second scenario the application end points (server and players) 
were in different networks but AVIS computation was performed in a single network. 
In the third setup application as well as each AVIS component were in distinct. The 
corresponding module deployment time of each test bed shows in fig. 5(a). The stack 
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show how much time was taken by individual components of the system. In all three 
scenarios the total module deployment took about 1.2 seconds. It includes 
authentication, automatic module transfer and their activation. The entire 
synchronization was performed by inter modules signals. Clearly a concern was to 
how much communication resource was consumed by this. The signaling overhead is 
plotted in fig. 5(b). It plots individual AVIS components in scenario. For comparison 
the second bar also shows the actual ADU data volume. Relatively small network 
resources are used for achieving coordination and controlling among the modules. 
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Fig-5 AVIS System Deployment and Signaling Overhead 

5.4 Adaptation Performance 

Whenever there is a change in the network condition/ capacity the adaptive system 
responds.  The AVIS system offers two forms of adaptation. The first is with the 
processing capable nodes and their computing powers.  Here we provide an 
experiment on this (as it involves module reallocation) and emulated incremental 
allocation of additional CPU power in the processing capable nodes into the system in 
three steps (events T1, T2 and T3) by changing the target frame rate of the AVIS 
system. The corresponding change in X-MUX buffers throughput frame rate (FPS) 
observed in the X-MUX unit is shown in fig. 6. It also shows the reaction time. More 
computation power gave more 
performance boost as 
expected. However, he first 
effects of the events on the 
throughput were reflected in 
about 1.5 to 2.2 seconds. It 
took little more time before the 
full effects took place. 

6 Conclusions  

It is interesting to note that the 
prominent target applications in the network computing paradigms (like grid 
computing, sensor computing or active networking) targets time sensitive systems 
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such as multimedia, control, or synchronized transactions, where jitter and delay 
management will be a central issue. The scheme we presented seems to be one of the 
first to specifically address the issue.  However, the temporal QoS required by these 
applications will be needed in very specific shades and sensitivities. Along with, it is 
highly unlikely that idealized statistical models (such as assumption of Poisson, 
Fractal, or Normal arrival), blind to applications’, used abundantly in classical 
attempts, may not be very effective in characterizing AIS where flows are being 
deliberately manipulated. Therefore, in the design of next generation network for 
advanced applications it will be of advantage to provision the path scheduling 
decisions at higher levels- perhaps outside of network layers. The lower network 
layers should focus more on providing base network parameters to the higher layers to 
facilitate this decision process. The proposed scheme can be implemented by generic 
application level framing (ALF) with some modification to RTP/ RTCP model. The 
critical decision that provides the QoS actually lies in the scheduling process. It is 
possible a different application (such as one which is interested in hard deadline- than 
jitter) would like to use a different scheduling component in GT-fork. The work has 
been supported by the DARPA Research Grant F30602-99-1-0515. 
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