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ABSTRACT 

This paper reports an associative approach for visuo-logical 
object oriented content-based query in image archives. The 
technique is based on a new associative search kernel called 
multidimensional holographic associative computing (MHAC) 
and a multi variate logic based inference mechanism which acts as 
a reasoning shell on the MHAC based search engine. This is one 
of the first query mechanism based of scalable associative search. 
It now allows user to define his/her own objects and index space 
and perform reasonably sophisticated query directly into images, 
without being mediated by intermediate symboli c model or 
encoder. 

Key words: associative memory, attention,  visual query,  
fuzzy-inference,  content-based retrieval. 

1. INTRODUCTION 

Any database query mechanism is a combination of a pattern 
matching engine and an inference mechanism that allows the 
logical composition of searches to meet complex expectations of 
inquirer. It would not be inappropriate to state this relation in the 
following famili ar form: 

Query Mechanism = Search Engine + Inference Engine 

In this paper we make observations about the nature of the 
traditional search and inference engines, speciall y with respect to 
their suitabilit y in content based image query (CBIQ). Eventuall y, 
we explore a new search mechanism which has already 
demonstrated some very attractive properties for content based 
image retrieval [7] with dynamicall y definable indices. In this 
paper we particularly focus on developing an inference 
mechanism that can harness the power of this promising new 
search technique. 

Many pioneering CBIQ approaches attempted to use 
traditional symboli c search mechanisms. However, now it is well 
experienced that these traditional search techniques face a 
number of serious diff iculties while searching into image database 

[2,5,8]. First of all , any search in image is computationall y 
massive. Compared to typical database record, image is 
representationall y much more denser. In addition, image 
information lacks structure and consequently can not be 
conveniently divided and catalogued in any ordered fashion in 
predefined concept slots. Whereas symboli c search approaches 
rely criti call y on the concreteness of concept definiti ons (i.e. 
“slotabilit y” ) and their ordering. Clearly, there is a need for more 
innovative search mechanism which is (i) characteristicall y adept 
in dealing with imprecise and structureless information, and (ii ) is 
computationall y much more scalabilit y. 

Very recently [7] has developed a new search technique which 
has  both of these important characteristics desirable for CBIQ. It 
has also demonstrated encouraging capabiliti es to perform direct 
content based image retrieval (CBIR) in almost constant time 
from vast amount of images. This paper now  investigates the 
architecture of a fuzzy logic based inference engine for this new 
search mechnaism which can support more advanced CBIQ by 
incorporating “ reasoning” capabilit y with visual objects. To our 
knowledge this is the first content-based image retrieval system 
which is founded on associative learning and retrieval [2,5,8]. 

The paper presents the design of this new CBIQ formali sm. In 
the following section we briefly describe the relevant properties of 
MHAC, and in section 3 we present the proposed query 
formali sm. In section 4 we present the inference mechanism that 
supports this formali sm. Finall y in section 5 we ill ustrate its 
operation through examples. 

2. HOLOGRAPHIC SEARCH ENGINE 

22..11  SSttrreennggtthhss  ooff  AAssssoocciiaattiivvee  CCoommppuuttiinngg::    

Parallel and distributed models of artificial associative 
memory (AAM) have demonstrated the abilit y to graciously cope 
with the inherent imprecision of image information [1,4]. 
Compared to symboli c search mechanisms, they are adaptive, 
computationall y eff icient and their mode of computation is highly 
parallel and distributed. It has long been anticipated (almost from 
the days of the advent of neuro computing) that AAMs can be 
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potentiall y used for content-based retrieval of image information. 
However, no such system has actuall y been implemented yet. 

One of the reasons for the lack of success is that current 
AAMs do not have the abilit y to focus on visual objects or more 
specificall y on any "meaningful" subset of the pixels in the 
images denoting the visual object(s). During query, they emulate 
an indiscriminate statistical pixel-to-pixel distance evaluation 
(mean square error, entropy etc.) giving equal importance to all 
the pixels in the sample image, which makes current AAMs 
rather simpli stic to be used for image retrieval. 

The meta-control over the importance of pixels, or in other 
words locali zation of search scope is criti cal for any search based 
on object similarity both during encoding and recalli ng. A sample 
image can be interpreted in numerous ways based on the visual 
object(s) in it that the searcher wants to emphasize as a basis for 
similarity. Each interpretation may result in different answers. For 
example, in a sample CT image depicting an abdominal cross-
section the searcher may choose either the "spinal column" or a 
"tumor" as his/her basis of similarity. But, current AAM models 
cannot accommodate such dynamic (post-learning) specification of 
focus. For the same reason, it also always converges to the closest 
match based on statisticall y dominant features [7]. However, the 
criti cal index objects used in image search as cues are always 
based on their cogniti ve importance irrespective of their statistical 
dominance. Such a cue is quite often only a fraction of the entire 
image. 

In addition, to deal with imperfect information li ke images, 
any "best match" search engine should also provide a qualit y of 
match feedback for every retrieval. Such feedback is not 
ornamental but vital i f the search engine has to be interactively 
integrated with any high level inference mechanism. Any previous 
AAM lacks such "assessment" abilit y. 

The holographic memory proposed by [7] overcomes both of 
the above inabiliti es. What makes it more attractive for CBIQ is 
that it also retains the usual advantages of associative computing, 
namely adaptabilit y, eff iciency, abilit y to cope with imprecision, 
scalable and parallel mode of computation. 

22..22  HHoollooggrraapphhiicc  AAssssoocciiaattiivvee  MMeemmoorryy::    

This new memory model is based on a formali sm which 
assumes the trust in each piece of transacted information as 
inherently non-conformal (thus enabling it to handle selective and 
dynamicall y changeable attention). In addition to the basic 
measurements, the formali sm includes the meta-information about 
the status of each given piece of measurements as an integral part 
of its representation and computation. A conventional AAM 
computes only with the former. Internall y, the information is 
represented as multidimensional complex numbers (MCN) 
spanned in a hyperspherical space. The phase set of MCN 
represents the measurements while the magnitude represents the 
meta-information. The computational model is physicall y a 
conceptual generali zation of optical holographic principles [3] and 
computationall y an instance of associative memory. The detail s of 
this model can be found in [7]. 

The search scheme is as following. A large number of image 
frames are first "folded" into the correlation memory substrate of 

MHAC, called as the holograph using a generali zed 
multidimensional differential Hebbian learning algorithm. The 
learning algorithm associates each of the learned images with a 
label called Response Label Pattern (RLP). A search or decoding 
is performed with an example image I and a mask M on it 
specifying the attention distribution on this image (which defines 
the feature object). For each retrieval with a [I,M] pair it returns 
the pair [RLPT,MNCT], which respectively represents the RLP of 
the closest matching image T, and a measure of the closeness.  

The computational advantage is gained from its property that 
this entire search process is a single step operation involving a 
convolution of the sample image with the holograph.  It can 
mediate a best match search with dynamic cue in a database of p 
images of size n with computational complexity O(n.logp). Like 
traditional approaches, it does not need to search individual 
images (which has complexity O(np)). For large p, this is a saving 
of exponential order. 

3. THE INFERENCE FORMALISM 
At the inference level, most of current approches use 

traditional bi-valued logic based inference system. However, a  bi-
valued symboli c logic appears brittl e while managing image 
information. The reason is that although the bi-valued logic 
provides a means of doing "logical algebra" with symbols, but the 
symbols themselves are assumed to be hard defined. 
Conceptuall y, a search involves the following steps, (a) a set of 
basis concepts (i.e. symbols), (b) specification of the concept in a 
query format, (c) search for the concept in image archive, (d) 
measurement of concept strength, and (e) verification of the 
measurements with expectation stated in the query. In the context 
of image information, each of these steps is inherently subjective 
both in the sense of "concreteness" of definiti ons and "precision" 
of measurements, thus the symbols are “soft” .  Bi-variate logic 
based inference engines provide no convenient mechanism to alter 
or adjust these underlying assumptions of  "concreteness" and 
"precision". A reasoning capabilit y suitable for imperfect 
information [6,10] is needed for quering image information. 

We demonstrate an experimental fuzzy-logic [10] based 
symboli c inference mechanism to interface with the holographic 
associative search engine. The proposed  engine at each stage of 
its inference process use a range value (rather than a fixed value) 
of "concreteness" and "precision" of the involved symbols and 
concepts. In addition, it also allows dynamic specification of these 
ranges. 

The formali sm supports two types of query compounding, 
namely (a) logical compounding, and (b) transform compounding. 
A logicall y compounded query is similar to the compounding used 
in conventional databases which integrate logical connective 
AND, OR and NOT. The mechanism of transform compounding 
allows users to perform searches involving variations based on 
transformations, and is an important part of image search. It 
corresponds to  active processing of templates before match. Both, 
of these compounding can potentiall y require multiple template 
matching for a single query. 
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33..11  LLooggiiccaall  CCoommppoouunnddiinngg  

The specification language allows logically compound queries 
to be chained together.  The query language is composed of (i) 
objects, (ii) logical connectives, and (iii) MNC linguistic 
quantifier (MNC-LQ). 

Format: The query formalism is of the following format: 

CCOOMM--QQUUEERRYY::  ((MMNNCC--LLQQ..OOBBJJEECCTT))..  LLOOGGIICCAALL--
CCOONNNNEECCTTIIVVEE..  ((MMNNCC--LLQQ..  OOBBJJEECCTT))  

Example: The following is an example of logically 
compounded query. It defines its complex query objective OBJ-
NINJA as: 

OOBBJJ--NNIINNJJAA::  ((HHIIGGHH..NNIINNJJAA--HHEEAADD))..OORR..  ((HHIIGGHH..NNIINNJJAA--
CCHHEESSTT))  

This example searches for object NINJA in the archive. The 
above command specifies that the presence of compound object 
NINJA can be confirmed by the strong presence of either, NINJA-
HEAD or NINJA-CHEST. The quantifier HIGH is a linguistic 
quantifier of the required detection strengths of NINJA-HEAD 
and NINJA-CHEST objects to confirm the presence of NINJA. 

33..22  TTrraannssffoorrmm  CCoommppoouunnddiinngg  

Transforms are used when the query image differs from the 
expected image in some procedurally definable sense (such as the 
sought object may be approximately half the size than the 
sample). It is also used when searching in based on invariancy 
with respect to some procedurally definable feature (such as size, 
translation, size). Translation in space, rotation, all are examples 
of transforms. Users can define the transforms. 

Each of the transforms has a set of parameters to quantify the 
abstract concept it defines. The general formalism of transform 
compounding accepts a specification of a range of these transform 
parameters on a given object. Each query is composed of (i) 
objects, (ii) transforms (XFORM(parameter-range)), (iii) 
transform-relations (XFORM-RELATION), and (iv) transform-
relation-quantifiers (XFORM-REL-LQ or LQ). 

Format: The format is specified below (here p,q and r are 
indices to the keywords): 

CCOOMMPP--OOBBJJ::  ((OOBBJJEECCTT11((XXFFOORRMMpp((rraannggee--ppaarraammeetteerrss))))..    
XXFFOORRMMpp--RREELLqq--LLQQrr..XXFFOORRMMpp--RREELLqq..  
((OOBBJJEECCTT11((XXFFOORRMMpp((rraannggee--ppaarraammeetteerrss))))  

Example: Below, an example of transform query is provided 
(the prepositions are just for the ease of reading and can be 
ignored): 

HUMAN:(NOSE(in LOCATION(middle of the picture)) 
JUST.ABOVE.( MOUTH( in LOCATION(lower 
half of the picture)) 

In this example, LOCATION is a transform (SIZE, 
CONTRAST, etc. are also other possible transforms). The range-
parameters of LOCATION is generally a region in the picture 
frame, where the object NOSE is expected to exist. ABOVE is a 
relation concept which is associated with LOCATION ( LEFT, 
DISTANCE, are possible relations which can be associated with 
the LOCATION transform). JUST is a linguistic quantifier 
associated with the ABOVE concept ( FAR is another example of 
such quantifier). 

33..33  TThhee  LLaanngguuaaggee  ((CCQQLL))  

The grammar for the Compound Query Language (CQL) is 
given below. The basic types are (i) base objects [I,M] OBJECT, 
(ii) tranforms XFORM, (ii) transform relations XFORM-
RELATION, and (iv) linguistics quantifier LQ. 

 

object OBJECT

object transform

object object object object object

object relation object

relation LQ XFORM RELATION

relation relation relation relation relation

transform XFORM parameter range

transform transform transform

←
←
← ∧ ∨ ¬
←
← −
← ∧ ∨ ¬
← −
← ∧ ¬

( )

. . | . . | .

. .

.

. . | . . | .

( )

. . || .

 

 

Objects can be compounded directly or through compound 
relations. However the direct logical compounding of objects can 
be interpreted as a special case of transform-relational 
compounding with a default transform-relation purporting the 
sense of existence with a linear evaluator function s=MNC. In the 
syntax, the LQ and transform-range can be omitted, implying a 
pre-declared corresponding default value for LQ.  

4. INFERENCE ENGINE 
Once a query is requested, each CQF query statement is 

decomposed into four components: (i) canonical object 
specifications [I,M], (ii) transform specifications, (iii) decoder 
specifications, and (iv) quantifier specifications. After 
decomposition, it is processed through following four stages; (1) 
search pattern identification (2) generation of templates, (3) 
matching of templates, and (4) assimilation of match. Fig-1 shows 
these stages. 

In the first stage, the object specifications in the command are 
parsed and component objects which are to be searched 
independently are isolated. A pattern generator generates these 
canonical patterns from the object base. The objects can be either 
elementary or complex. 
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OBJECT SPEC.

TRANSFORM SPEC.

DECODE SPEC.

LOGIC SPEC.
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Fig-1 Inference Engine 

In the second stage, each canonical pattern is repli cated into a 
set of templates which are parametricall y translated from the 
canonical pattern. The parametric translations are generated using 
pre-declared transforms from transform library. The transform 
driver performs parametric translations according to the range 
specification provided by the search controller. 

The next step is to perform associative decoding. The 
associative decoder logs its result in a table called Search 
Summary Table (SST). It prepares one SST for each canonical 
search pattern. The search summary table contains (i) the 
suggested matching RLPs, (iii ) corresponding MNC, and (iii ) the 
parameter values at which the match has been registered. 

The final stage is the logical assimilation of the information 
obtained in the SSTs. In this stage, first, the transform-relation 
evaluator functions are invoked to compute the strength (s) of the 
transform relations. 

Each of the transformed-relation concepts is li nguisticall y 
quantified into several quantifier levels or fuzzy sets (such 
as,HIGH, MODERATE, LOW). For, a given s, the membership 
strength of each quantified level can be determined by the fuzzy 
sets membership functions. These functions return the strength of 
the quantified-transform-relations. One function is required for 
each linguistic quantifier level for each relation. 

The individual membership strengths are graduall y 
assimilated to satisfy the logical constraints specified in the 
command using fuzzy inference rules. Standard fuzzy 
transformation functions and operations are used to compute the 
confidence values for each possible intermediate answer. The 
inference results are presented in the assimilated SST sorted in 
accordance of the computed MNCs. 

5. EXAMPLE 
Now a visuo-logical query will be ill ustrated to explain the 

integrated inference and search process. Below is a sample 
question: 

OOBBJJEECCTT33::((HHIIGGHH..  OOBBJJEECCTT11((  iinn  LLOOCCAATTIIOONN22DD  ((xx11--
xx22))((yy11--yy22))))))..  MMOODDEERRAATTEELLYY..  LLEEFFTT--OOFF..  ((  HHIIGGHH..  
OOBBJJEECCTT22((  iinn  LLOOCCAATTIIOONN22DD  ((xx11--xx22))((yy11--yy22))))  

This example involves transforms as well as fuzzy spatial 
reasoning. The inference engine first decomposes it into two 
independent searches, one involving OBJECT1 and the other 
involving OBJECT2. For both of these searches, the transform 
driver generates a set of transformed templates of the supplied 
canonical patterns by using the transform LOCATION2D() from 
the transform library. (LOCATION2D(xmax,xmin,ymax,ymin) is 
a transform with two parameters and can be used as a basis for 
spatial reasoning in images of 2D scene). These templates are 
then passed to the search engine. The associative decoder then 
performs holographic decoding and finall y returns the results to 
the logical layer in the search summary table (SST). SST contains 
the RLP's and corresponding MNC's for each match, and the 
transform parameter value for which these matches were found 
(i.e. the locations in this case).  

The search results in two SSTs, which include the location of 
match in the image (figures 2(a) and 2(b)).  Each of the SSTs is 
mapped with fuzzy set functions to evaluate the MNC for the 
concepts HIGH.OBJECT1 and HIGH.OBJECT2. A linear function 
is assumed in this case which leaves the MNC values intact.  

In this command, LEFT-OF is a transform-relation defined 
with the parameters of transform LOCATION(). It invokes a 
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LEFT-OF() strength evaluator function, which operates on the 
LOCATION parameter (x,y) columns of the SSTs of OBJECT1 
and OBJECT2. The user is entitled to have any interpretations of 
the linguistic concept LEFT-OF().  

 The evaluation suggests that RLPs 1012 and 2017 are the 
possible matches with respective normalized strengths .568 and 
.110. The next step is to compute the strength (y) of the 
quantified-relation MODERATELY. LEFT-OF. This is evaluated 
by the fuzzy set function associated with the linguistic quantifier 
MODERATELY as defined in (Fig-2(c)). 
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Fig-2 Example of Inference 

 

Finall y, the three concepts HIGH.OBJECT1, 
NEAR.DISTANT-FROM and HIGH.OBJECT2, are combined 
together by min-rule to obtain the MNC of OBJECT3 (Fig-2(d)). 

6. CONCLUSIONS 

The new approach demonstrated in this paper allows users to 
launch complex content-based queries into an image repository by 
incorporating “ reasoning” capabilit y into the search process with 
visual objects. The principal strength of this approach is that it 
empowers the end user. Such empowerment interm helps coping 
with the uncertainty, ambiguity and imprecision that has been 
found to be inherent part of pioneering CBIQ approaches that use 
some form of intermediate symboli c model to mediate search. 

At the definiti on level, the user can dynamic specify the index 
objects ([I,M]). In the inference level, CQF formali sm provides 
the user a flexible environment to set up his/her own basis for the 
reasoning process through the following control points: (a) 
Transform (XFORM) generation routines, (b) Transform-relation 
(XFORM-REL) strength evaluation routines, and (d) Transform-
relation-quantifier (LQ) membership functions. Together, these 
make the “assumptions” underlying the interpretation and 

inference of outer tier (CQL) “programmable”. Finall y, at the 
innermost tire, the eff icient pattern matching capabilit y needed to 
support such empowerment is provided by MHAC. This search 
method is also highly parallel and scalable, and even potentiall y 
opticall y reali zable [7,9]. 

In general, an associative visual search approach li ke MHAC 
will be more effective when the images tend to be natural (non-
graphical), the objects are diff icult to describe or model, the 
image volume is enormous and examples with visual similarity at 
the object level are available. 
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