
A Parallel Matrix Inversion Algorithm
on Torus with Adaptive Pivoting

Javed I Khan, Woei Lin, & David Y. Y. Yun
East West Center & Department of Electrical Engineering

University of Hawaii at Manoa
2540 Dole Street, Honolulu, HI-96822

javed@wiliki.eng.hawaii.edu
Tel:808-956-7249
Fax:808-941-1399

ABSTRACT

This paper presents a parallel algorithm for matrix inversion
on a torus interconnected MIMD-MC2 multi-processor. This
method is faster than the parallel implementations of other widely
used methods namely Gauss-Jordan, Gauss-Seidal or LU
decomposition based inversion. This new algorithm also intro-
duces a novel technique, called adaptive pivoting, for solving
the zero pivot problem at no cost. Our method eliminates the costly
row interchange used by the existing elimination based parallel
algorithms.This paper presents the design, analysisand simulation
results (on a 32 Node Meiko Transputer) of this new and efficient
matrix inversion algorithm.
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This paper presents a parallel algorithm for matrix
inversion on a torus interconnected MIMD-MC2 multi-
processor. This method is faster than the parallel imple-
mentations of other widely used methods namely
Gauss-Jordan, Gauss-Seidal or LU decomposition based
inversion. This new algorithm also introduces a novel
technique, called adaptive pivoting, for solving the zero
pivot problem at no cost. Our method eliminates the costly
row interchange used by the existing elimination based
parallel algorithms. This paper presents the design, anal-
ysis and simulation results (on a 32 Node Meiko Trans-
puter) of this new and efficient matrix inversion algorithm.

1 Introduction
Csanky [1] has shown the best possible bound of parallel

matrix inversion. Given a finite number of processors, the best
we can do is to compute inverse in O(log2n) time using
O(n4/log n) processors. However, such processor requirement
is unrealistic. Among the O(n) algorithms, using O(n2) pro-
cessors, QR method using Givens transformations [4] takes
more than 8ncomputationalsteps (because of decomposition),
LU decomposition requires 3n steps (because of forward and
backward substitutions), Gauss-Jordan requires 2n steps
(because of backward substitution) and Gauss-Seidal requires
n steps, but its step-width is 4flops (because it maintains two
matrices) [4]. We here propose a new parallel algorithm,
which is superior to all of the above methods, and is able to
compute the inverse by performing n3 computations in n
sequential steps on n2 processors with 2flops step-width. This
algorithm is based on Faddeeva’s [2] method for the com-
puting determinant. We have reduced the matrix inversion
problem to the problem of computing determinants, and
mapped the transformed computations on a torus architecture
with overlapped computational phases. As we will see, the
perfect match between the algorithm and the homogeneous
torus structure resulted in a highly localized and uniform
communication and computation pattern.

Two of the most critical problems in matrix manipulation
are zero pivots and propagationof rounding offerror [5]. Some
researchers suspect the existence of a law of conservation in
linear systems which states that if a stability criterion is to be
met then a certain number of arithmetic steps must be
performed [4]. Existing matrix algorithms use row column
interchange for stability. But, in parallel computation such
interchange is prohibitively expensive due to communication
cost. Our algorithm solves the problem of zero pivot by
dynamic adaptation of pivots and re-labelling of elements
using local informations. Thus, it substitutes the costly row
column interchange at no cost.

Sections 2 and 3 respectively present the theoretical
derivation of the computational procedure and the supporting
theorems for adaptive pivoting. Sections 5 and 6 respectively
present the algorithm and the simulation study performed on
a 32 node Meiko Transputer.

2  Inversion Method
Computing Determinants: We shall start from the

Faddeev’s original procedure [2]. Given the nxn matrix A, if
then the determinant is,

Here, the subscript .n refers to the successive stages after
each Gaussian elimination. i.e., aij.1=aij.0-ai1.0 a1i.0/a11.0. i,j=
2,3,...n. One such elimination along the rows (or columns) of
matrixA reduces the original determinant to a product of pivot
a11 and a determinant of (n-1)th order matrix A.1. Repeated
application of the above transformation generates matrices of
decreasing orders and corresponding coefficients a11, a22.1
...ann.n-1. Finally, the determinant of the matrix is given by the
scalar equation (1) provided all the pivots are non-zero.

Computing Inverse: The cofactor Aij of the element aij
is the determinant of a new (n-1)x(n-1) matrix formed by the
elements of A except the ith row and jth column. However, this
same cofactor Aij can be defined as the determinant of another
matrix E of order (n+1)x(n+1), which is constructed by
augmenting (instead of eliminating) a new row and a new
column with A in the following way,

Now, n times repeated application of the Faddeeva’s
procedure (just described above in Sec-2.1) on E generates a
new matrix A.n =[aij.n] such that:

Equation-(2) and Cramer’s rule directly shows that is
the inverse of A as shown below:

Computational Model & Mapping The following pro-
cedure computes Equation-(2):

a11 ≠ 0

| A| =
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= a11*A.1

| A| = a11*a22.1*a33.2*…ann .n − 1 (1)
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e(n + 1)1 e(n + 1)2 … e(n + 1)n e(n + 1) (n + 1)









where , epq

= apq when1 ≤ p ≤ n , 1 ≤ q ≤ n

= 1 when p = (n + 1), q = i

= 1 when p = j, q = (n + 1)

= 0 else

−Aij = a11*a22.1*a33.2..*ann .n − 1*aij .n = | A| aij .n (2)

−A.n
T
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1. Enter the first phase k=1. Take the original matrix [aij]
and create the extended matrix E1 with eij =aij for
i,j=1,2..n.

2. Add a new row and a new columnwith all zero elements
except, e(n+1),1.k =-1 and e1,(n+1).k=1.

3. Calculate ei,j.1=ei,j.1-ei,1.1*e1,j.1/e1,1.1 for all i,j= 2,..(n+1).
4. Consider the elements eij.k of Ek with i and j varying

from 2 to (n+1) as the elements ei,j.k+1 of the new
extended matrix Ek+1.

5. Repeat steps 2,3 & 4 until k=n.

At the end of nth phase, the inverted matrix is given by
[eii.n]

T. Fig-1 presents the propagation of computation plane
by the above model for a 4x4 matrix. In each of the phases,
the elimination is performed on the shaded elements. The
lower right 4x4 elements at the end of 4th phase contain the
transpose of the inverse.

Fig-1

Fig-2

Fig-2(a) shows the required computations in each of the
phases. Capital letters denote the previous value and small
letters denote the new value of the local variables. To perform
these computations, each of the top row and left column nodes
requires only one external data (the pivot), while all others
need three external data i) the pivot, ii) the left most element
of the row and iii) the topmost element of the column. We
have reduced the number of communication from three to two
by making the pivot transfer implicit. The topmost nodes,
upon receiving P, transmit U/P instead of U and the nodes
compute v=V-L*[U/V]. Fig-2(b) shows the resulting com-
munication pattern.

Now, we will map the phases. It is evident from the
computational model (Fig-1) that the phase computation
directly maps onto a mesh. However, between the phases, the
corner of the computation frame slides down diagonally. A
straightforward mapping on the mesh architecture therefore
requires that all of the elements be pulled up diagonally one
step in between phases. Algorithmically, this mapping is
sound, but pulling the whole matrix up is expensive, and
fortunately, can be avoided.

At the end of each phase, the data of some nodes are no
longer being used ( the first row and the first column) while,
on the other hand, some new nodes are required (in the
bottom). We have decided to map these new elements directly
on the emptied nodes. The consequences are, i). the diagonal
transfer of the entire matrix is no longer required, ii). the

Fig-3

logical mesh containing the active matrix is wrapped and iii).
the phase procedure is required to slide down the diagonal at
every iteration.

We have used torus to accommodate all the phases as
shown in Fig-3. Because of its boundary free property, it maps
uniformly all the wrapped around meshes. The phase com-
putation and communication pattern presented in Fig-2,
applied recursively on the logical meshes of Fig-3 provides a
compact mechanism for matrix inversion.

3 . Dynamic Adaptive Pivoting
In this section we show that it is possible to compute the

inverse using more flexible pivot ordering than the
principle-diagonal pivot order used earlier in section 2 (or in
conventional algorithms). We know, a complete computation
requires n pivots. In this section, using the following two
theorems, we will show that any element can be a part of those
n pivots so far no two are from the same row or same column.
Thus, there can be

ways of
selecting the pivots. Below, a ⇐ b refers to a ’maps’ b.

Theorem 1: If T is a torus where individual processors are
tij and B is A-T with elements aij and P is a set of n pivots,
then the sequence of selecting individual pivots from the
same set in successive phases does not affect the final
mappingof the elements of B on the processors of the torus
T where P is as follows and xi and yi are the pivot position
selected in ith iteration:

Proof: To prove the above theorem we will show that the
interchange of the lth and (l+1)th pivots, i.e. the sequences (i).

and (ii). , both

generates the same result at the end of (l+1)th phase. Let, at
the end of (l-1)th phase, the matrix be as follows where P and
Q are the next two successive pivots and Tij is an arbitrary
element of the torus.

The sequence (i) computes the fol-

lowing at the end of (l+1) th phase on Torus node Tij.(l+1):

The other sequence (ii) at the end of

(l+1)th phase computes on the same node Tij.(l+1):

Complete Taurus Phase 1 Phase 2 Phase 3 Phase 4

PHASE PIVOT

PHASE PROPAGATION

(a) PHASE 1 (b) PHASE 2 (c) PHASE 3 (d) PHASE 4

[P=V]

v=1/V v=V/P

[U1=V] [U2=V] [U3=V]

[L1=V]

[L2=V]

[L3=V]

v=-V/P

v=-V/P

v=-V/P

v=V/P v=V/P

v=V-U1*L1/P

v=V-U1*L2/P

v=V-U1*L3/P

v=V-U2*L1/P

v=V-U2*L2/P

v=V-U2*L3/P

v=V-U3*L1/P

v=V-U3*L2/P

v=V-U3*L3/P

(a) COMPUTATIONS IN A LOGICAL PHASE (b) COMMUNICATIONS IN A LOGICAL PHASE

P P
P

L L L

L L L

L L L

V U/V

U/V

U/V

U/V

U/V

U/V

U/V

U/V

U/V

V

V

n 2*(n 2 − 2n + 1)*(n 2 − 4n + 4)*(n 2 − 6n + 7)*….*2*1

P = 


Px1y1

, Px2y2
, …Pxn yn

∋ x1 ≠ .. ≠ xn, 1 < xj < n , y1 ≠ .. ≠ yn, 1 < yj < n 



…Pxlyl
→ Pxl +1yl +1

→ .. …Pxl +1yl +1
→ Pxlyl

→ …

A.l − 1 =
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⋅ ⋅ Nxlyl +1
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…Pxl +1yl +1
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Tij .l + 1 ⇐

T −
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Q
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P − MN
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= T −
LUQ + VRP − LVN − RUM

PQ − MN



These two values are same. Thus, if pivot set P is fixed,
the sequence does not effect the final mapping.

Theorem 2: If B is A-T, and initially the matrix A is mapped
onto torus T in such a way that aij is mapped on Tij for
i,j=1,2,3....n and Plm and Pxy are two members of the pivot
set P, then at the end of the nth phase, Tmx contains bly and
Tyl contains bxm.

Proof: Let us consider the general pivot order,

Since, the internal sequencing of the pivots does not effect
the final mapping (according to Theorem 1), we will sort the
pivots along row dimension. Let the resulting equivalent
sequence be:

Since, at each of the successive phases a new column and
a new row of the final matrix A.n are introduced. Thus, the kth

column of the final matrix will contain the values of the
cofactor of the rows calculated at the kth phase. Therefore, the
ith column in A.n will contain the cofactor of the elements of
the zi

th row.

Now, to find out the content of a row, we again sort the
pivots along the column dimension. Let the resulting equiv-
alent sequence be the successive elements of the pivot set

The above sequence maps the cofactor of the wj
th column

in the jth row. Thus, if plm and pxy are two pivots, then,

i. lth column of T mth row of A-1 mth column of B.
ii. xth column of T yth row of A-1 yth column of B.
iii. mth row of T lth row of A-1 lth column of B.
iv. yth row of T xth row of A-1 xth column of B.

The following required mappings are the direct conse-
quence of the above:

4 . The Algorithm
The algorithm proceeds through successive overlapped

wavefronts. At each of the execution phases, the algorithm
selects a pivot and then the computational wave, originating
at the pivot, follows the computation and communication
pattern explained in Fig-2. Pivots are selected according to a
flexible default order. If a zero pivot is encountered, the
default order is interrupted and a new pivot position is tried
according to a search order.

Default Order: According to Theorem 1 & 2 any n pivots
can be selected in any sequence to compute the inverse
elements as long as no two of them are from the same row or
same column. The performance of the wave algorithm
depends on the inter phase gap. Therefore, the pivot sequence
for the default order should be chosen such that, this gap is
minimum. Therefore, any of the diagonal orders is a good
choice as a default pivot order.

Search Order: The search for a non zero pivot can
proceed along the i) same row, ii) same column or iii) same
diagonal. Any three of the strategies can be adopted. If it
proceeds through the same row (or column) than the singu-
larity can be detected efficiently. On the other hand, if it

proceeds through the same diagonal, according to Theorem
1, the mapping expected from the forward diagonal pivotorder
will be preserved.

Tracing: Flexible pivoting destroys the expected
element-processor mapping. Since, all the processors know
both the pivot selection strategies algorithmically, therefore,
all can determine the physical position of the current pivot
locally. Thus, according to theorem 2, a processor in the same
row (or same column) as with a pivot, records the phase
number as the final column (or row) position. This scheme
provides the final mapping. Interestingly this mapping is done
using only local information.

Below we present a simplified pseudo-code of the algo-
rithm. For clarity we have assumed the actual pivot order is
supplied by the xphase[] and yphase[] arrays.

int k=0, s=n, p_count=n;        else v=v/p;
int xphase[],yphase[];        send(v:east);
getpid(i,j);        send(p:south); }

/* Loop for n phases*/ /* If Left Column Ele-
while(p_count) { ments*/
     px= xphase[k];       elseif(px==i) {
     py= yphase[k++];        send(v:south);

       recvb(p:west);
/* If Phase pivot*/        if(p==ABORT) {
    if(px=i and py=j) {            xphase[s]=px;
       if(v <= thres) {            yphase[s++]=yx;
          v= ABORT;            p_count++; }
          xphase[s]=px;        send(p:east);
          yphase[s++]=yx;        v=-v/p;}
          p_count++;}
      send(v:south); /* For Other Elements*/
       send(v:east);      else {
      v=1/v;}        recvb(u:north);

       if(u==ABORT) {
/* If Upper Row Ele-            xphase[s]=px;
ments*/            yphase[s++]=yx;
     elseif(py==j) {            p_count++;}
       recvb(p:north);        send(u:south);
       if(p==ABORT) {        recvb(l:west);
           xphase[s]=px;        send(l:east);
           yphase[s++]=yx;        v=v-u*l;}
           v=ABORT; p_count--; }
           p_count++;}

Complexity of The Algorithm: The performance of the
algorithm lies on the time between the initiations of two
successive phases. If the pivots are along the principle
diagonal, then the successive phases can be initiated at
1,7,13,19.. time instances. The distance 6 consists of 4
communication and 3 computations(1 division+1 multipli-
cation+ 1 subtraction). There are n-1 phase gaps. The last
phase propagates to the logical end in time 2(n-1)
communication steps and n computations. Thus,

Tpar=(4tcomm+tsub+tmul+tdiv)(n-1)+2(n-1)tcomm + n.tcomp

If we consider the sequential execution time, then in each
phase, there are 2*(n-1) divisions, (n-1)2 multiplications, 1
inversion and (n-1)2 subtractions. Thus, for n phases:

Tseq=(2n-1).n.tdiv+n(n-1)2(tmul+tsub)

The scalability of our algorithm is given by the following
equation where m is the order of matrix and n is the order of
torus space.

P = {Px1y1
, Px2y2

, …Pxnyn
∋ x1 ≠ .. ≠ xn, 1 < xj < n , y1 ≠ .. ≠ yn, 1 < yj < n}

Ṗ = {P1z1
, P2z2

, …Pnzn
∋ z1 ≠ z2 ≠ .. ≠ zn, 1 < zj < n} ≡ P

P̈

P̈ = {Pw11, Pw22, …Pwnn ∋ w1 ≠ w2 ≠ .. ≠ wn, 1 < wj < n} ≡ P

⇐ ≡
⇐ ≡

⇐ ≡
⇐ ≡

Tml ⇐ blm ≡ Aml; Tmx ⇐ bly ≡ Ayl; Tyl ⇐ bxm ≡ Amx; Txy ⇐ bxy ≡ Ayx



Tpar=(4tcomm+(m/n)(tsub+tmul+tdiv))(m-1)+2(n-1)tcomm + m.tcomp

This expression shows that smaller block size does not
significantly increase the communication cost (which is still
proportional to the matrix size) but reduces the computation
cost drastically.

5 . Performance Analysis

Fig-4

Fig-5

Fig-6

We have implemented the algorithm with adaptive flex-
ible (any general) order pivoting and tested its performance
on a 32 node Meiko Transputer. We used randomly generated
matrices of various sizes up to 80x80. Block decomposition
strategy has been adopted to map large matrix on a smaller
torus. Fig-4 shows the relative speedup with the variation of
the matrix size for different torus configurations. Fig-5 shows
the variation of absolute execution time with respect to the
variation of relative communication speed with various torus
size. We varied the torus sizes from 2x2 to 5x5. To keep the

computations per node constant, we used a block size of 5x5
on each torus node. As expected, the performance improved
with large matrices, higher communication speed and with
more processors.

To study the effect of zero pivots we picked up some non
regular pivot sets. Fig-6 shows the effect of selecting such
arbitrary pivots on execution cost. For a 4x4 torus, there are
576 ways of selecting the pivots. In this figure we have
considered 12 from this set (so that the first pivot is 00 and
the last pivot is any element on the principle diagonal). The
subset shows 50% variation in the execution cost due to
pivoting.

6 . Conclusion
In this paper we have presented a parallel algorithm for

matrix inversion. The algorithm uses an nxn torus connected
parallel processor to invert an n by n matrix in O(n) time. The
resulting algorithm is one of the most compact and efficient
method in terms of the number of computations and com-
munication pattern.

Here we will put some comments and a comparison on the
performance of our method in solving linear systems. To
solve the linear system AX=B, our method requires additional
n steps to multiply the inverse with the right hand side B. On
the other hand, LU decomposition method (cholesky for
example), requires 2nadditional steps to complete the forward
and backward substitutions for each column of B. The bottle
neck of LU decomposition method is the inherently sequential
forward and backward substitution. Thus, our method will be
faster than LU decomposition method in solving linear sys-
tems in parallel, although, in sequential case the LU decom-
position will perform better.

On the issues of numerical stability, we have shown that
our method can take care of zero pivots by adaptive pivoting.
However, to improve stability against catastrophic cancella-
tion and finite precision arithmetic, our method suffers similar
disadvantages [3,5] like the LU decomposition or any other
elimination methods. The sorting required for partial or
complete pivoting requires O(n.logn) parallel comparison
steps and a global search in each iteration. However, our
adaptive pivoting method will save the traditional interchange
required after sorting.
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