
ADAPTIVE ALGORITHM-BASED FAULT TOLERANCE FOR
PARALLEL COMPUTATIONS IN LINEAR SYSTEMS1

Javed I. Khan, W. Lin & D. Y. Y. Yun

Department of Electrical Engineering
University of Hawaii at Manoa

492 Holmes Hall, 2540 Dole Street
Honolulu, HI-96822

javed@wiliki.eng.hawaii.edu

SUMMARY

This paper presents a novel scheme for the stabilization of parallel matrix computation which is

dynamically adaptive. The scheme performs automatic error detection and correction through inserting

redundant but concurrent tracer computations within the folds of the regular computation. This scheme for

the first time successfully eliminates the classical row/column interchange based pivoting which has been

an expensive but only technique available to almost all of the parallel matrix algorithms to maintain stability.

A fault-tolerant double wavefront algorithm for a MIMD array multi-processor with toroidal inter connection

has been designed to demonstrate the strength of the proposed scheme. This algorithm can compute: i) matrix

inverse ii) solution vector to the linear system and iii) predetermined linear combination of the solution

vector from identical algorithmic framework. This tri-solution algorithm excels other known methods in

parallel performance for all three problems. It can generate all three forms of solutions for a system

on a torus in n steps with floating point operations per step. The proposed scheme also offers

detection (and partial recovery) of various transient hardware failures, such as memory faults, and message

packet corruption at algorithm level. Due to the adaptive pivoting and the unique dual-wavefront commu-

nication pattern, the resulting activity on the torus resembles the ripples on a pond formed by the raindrops.

The paper includes performance results obtained from a 32 Node MIMD Meiko Transputer implementation.

Key Words:

Algorithmic Fault-Tolerancy, Numerical Computing, Parallel Algorithm, Adaptive Pivoting

n × n

3

(n +1)
p

2
p� × p

1 This paper has been published in the proceedings of the 23rd Annual International Conference on Parallel Processing, ICPP’94.
Now we are in the process of benchmarking this algorithm on the SP2 super computer nodes at Maui High Performance Computing
Center (MHPCC) and sending the final results to a journal.

ADAPTIVE ALGORITHM-BASED FAULT TOLERANCE FOR
PARALLEL COMPUTING IN LINEAR SYSTEMS

Javed I. Khan, W. Lin & D. Y. Y. Yun
Department of Electrical Engineering

University of Hawaii at Manoa
Holmes 492, 2540 Dole Street, Honolulu, HI-96822

javed@wiliki.eng.hawaii.edu

ABSTRACT
This paper presents a dynamically adaptive stabili-

zation scheme for parallel matrix computation. The
scheme performs automatic error detection and
correction through inserting redundant, but concurrent
tracer computations within the folds of the regular com-
putation. It also eliminates thecostly rowinterchangeused
in classical pivoting. A fault-tolerant double wavefront
matrix algorithm for a MIMD array multi-processor with
toroidal inter connection has been designed to demon-
strate the strength of the proposed scheme. This algorithm
can compute: i) matrix inverse ii) solution vector to the
linear system and iii) predetermined linear combination
of the solution vector from identical algorithmic frame-
work. This efficient tri-solution algorithm excels most
other known methods in parallel performance.

1. INTRODUCTION
Other than speed, stability is the next most important

computational issue in dealing with linear systems [11].
Most of the stable algorithms in linear systems are based
on triangular factorization [2,3]. It is now known that
these methods (generally based on LU decomposition,
Given’s rotation, etc.) are inefficient when parallelized
[9]. Because, the involved forward and backward substi-
tutions that follow and precede triangularization are
inherently sequential. For example, in matrix inversion,
one of the most stable and well-known triangular method
based on Cholesky LU decomposition [10], is slower than
the less stable classical Gauss-Seidel method by a factor
of two [4]. Attempts to parallelize many linear system
algorithms perplexingly revealed that the higher is the
inherent stability of an algorithm, the lower is its scope of
parallelization, and vice verse.

Partial pivoting can improve the stability of better
parallelizable approaches [6]. Unfortunately, the very
process of partial pivoting itself seriously undermines the
concurrency of the target algorithm. Until now, the row
(column) interchange, which is required by partial piv-
oting, remains prohibitively expensive given the archi-
tectural constraints of parallel processors. Very few
alternative proposals exist to improve parallel pivoting.
The possibility of restrained interchange based on
threshold scheme has been raised by [2]. However, there
is no satisfactory technique that can select appropriate
threshold without incurring substantial communication
cost. Some researchers have recently proposed fault tol-
erant approach to improve stability as a shift towards
curative from preventive approach [5,8].

In this paper, we present a scheme for adaptive
algorithmic fault tolerant computing in linear systems,
based on two techniques. The combined scheme is capable
of dynamic error detection, and correction of any single
error. It has theoretical stability equivalent to that of partial
pivoting. The first technique, called adaptive pivoting
(AP), relaxes some of the artificial constraints of classical
partial pivoting, and utilizes this relaxed computational
model to eliminate the prohibitively expensive row col-
umn interchange of classical pivoting. The second tech-
nique, called inter-phase checksum (IPC), attempts to
circumvent the problem of instability by deliberate
insertion of redundant, but highly concurrent computa-
tional patterns inside the regular computations of an
elimination based algorithm. This technique improves
Huang and Abraham’s [5] curative approach by incor-
porating a new spatio-temporal model of underlying fault
propagation. Based on this new propagation model and
the tracer patterns, IPC can dynamically detect and correct
faults as they occur during the execution of the algorithm.

The effectiveness of the combined scheme has been
demonstrated through a tri-solution algorithm. This
algorithm has been derived from Faddeeva’s non-
triangular method for computing matrix determinant,
which was first translated in English in 1959 [1]. As we
will demonstrate, the derived tri-solution algorithm comes
out to be faster than most other known parallel methods
while solving each of the three problem forms even after
combining the proposed stabilization scheme.

The following section first presents the derived algo-
rithm and its mapping without AP and IPC. Section 3
introduces the AP technique. Section 4 presents the IPC
scheme and underlying matrix error model. Finally, sec-
tion 5 and 6 present the combined MIMD algorithm, its
parallel complexity and scalability analysis, and the
performance result from its implementation on a 32 Node
MIMD Transputer System.

2. COMPUTATIONAL MODEL
Here we will only briefly describe the algorithm and

its mapping on a torus. The details of the tri-solution
procedure derivation can be found in [7]. Notations like
Axy.t will be used to refer to the element at (x,y) co-ordinate
of A at the tth phase. In places, the co-ordinates will be
dropped to refer to all the elements.

Computational Procedure: Let AX=B is a linear
system where X is the vector defining the n system
variables, A is the coefficient matrix, and let CX be any
linear combination of the system variables. Given A, B and
C, we want to compute (i). A-1 (ii). A-1B and (iii). CA-1B.
In short, the scheme is equivalent to performing elimi-

nation on the following extended matrix. An elimination
step refers to the computation of aij.k+1=aij.k-aik.k*akj.k/akk.k
where n<i,j,k<n+1.

For problem form (ii), the elements of vector C, and
for problem form (i) the elements of both the vectors B
and C are substituted by 1.

Mapping of The Model: The derived procedure
which solves all three forms of the problem can be
summarized below in the algorithmic form.
1. If (i) Set B=C=U, if (ii) Set C=U where U is a vector
with all unit elements. Enter the first phase k=1.
2. Take the original matrix [aij] and create an extended
matrix E1 with eij =aij for i,j=1,2..n.
3. Add a new row and a new column with all zero elements
except, e(n+1),1.k =-ck and e1,(n+1).k=bk.
4. Calculate ei,j.k=ei,j.k-ei,1.k*e1,j.k/e1,1.k for all i,j= 2,..(n+1).
5. Consider the elements eij.k of Ek with i,j=2...(n+1) as the
elements ei,j.k+1 of the new extended matrix Ek+1.
6. Set k=k+1, and repeat steps 2,3 & 4 until phase k=n.
7. If (ii) Calculate column sum or, if (iii) Calculate sum
of the column sums.

Steps 2 to 5 constitute the core part of this algorithm.
Although, the size of the augmented matrix is 2nx2n, but
we have been able to map the entire computation on an
nxn torus by considering only the active portion of the
computations. The data dependency of this computational
structure is satisfiedby consecutive (i) rowwise horizontal
and (ii) a column wise vertical wave propagation between
the phases. The communication speed of this compact
algorithm has been further improved by allowing bi-
directional waves instead of unidirectional flow, which
reduces the network diameter into half. The sum-phase
(7th step) is required by solution forms (ii). and (iii). We
will see later that this phase can be completely merged
with the IPC phase.

3. ADAPTIVE PIVOTING
Classical pivoting schemes select the pivots along the

principal forward diagonal (PFD). If there is a zero (or
small) pivot, the row is usually interchanged with another
row with non-zero (or a large) pivot. However, unlike the
sequential algorithms, parallel algorithms have to incur
prohibitively expensive communication cost to perform
such interchange (consider the situation if the old and new
rows are far away from each other). We therefore, suggest
skipping the pivot position adaptively, rather than
exchanging rows.

Theoretical Basis: We assume, T is the nxn torus with
processors tij, and A is the initial matrix with elements aij,
where . We also assume that initially the matrix
element aij is mapped on processor tij, and let operator ⇐
refers to ’maps on’.
Theorem 1: If BT is the resultant matrix generated from
A after performing n elimination steps and P is the set of
n pivots used, then the sequence of selecting the pivots
within this set in successive phases does not effect the final
mapping B⇒ T.

Theorem 2: If B is the resultant matrix generated from
matrix A after performing the Faddeeva elimination steps
(as derived in section 2) using principal forward diagonal
(PFD) pivot set Ppfd, and if Plm and Pxy are two members
of the applied pivot set P then at the end of the nth phase,
tmx contains bly and tyl contains bxm.

The formal proof of these two theorems can be found
in [7]. Theorem 1 implies that the conventional PFD pivot
selection strategy is over constrained. Same computa-
tional result is obtainable by other selection order in PFD.
For,example, if pivot (k,k) is found to bezero (or toosmall)
then, instead of exchanging the kth row with k+1th row and
then taking the new (k,k) element as the pivot, the
algorithm can simply proceed from (k+1,k+1) element as
the pivot, and can come back to (k,k) element at some later
phase.

Theorem 2 further relaxes the constraint. It implies that
it is not imperative to select the pivots from the PFD. Any
n elements can be used as pivot so far no two of them are
from the same row or column. However, this over relax-
ation has one important side effect; the mapping of the
final elements changes.

Procedure: The crucial gap between the above
relaxation and a practical pivoting scheme is the cost of
retracing the convoluted mapping. A costly retracing can
easily offset the gain from the avoidance of row inter-
change. This crucial gap has been effectively bridged by
devising a distributed tracing scheme. As suggested by
theorem 2, the tracing of the identity of the local element
requires (i) phasesequence number, and (ii) corresponding
pivot position. Both of these are available locally to the
processor nodes through the basic algorithm. As a result,
the entire mapping can be traced without any extra
communication.

Adaptive pivoting makes prudent use of the above
relaxation and, insteadof interchangingrows, it adaptively
skips pivot positions depending on their values (zero or
too small a value suggests skipping). Every node on a torus
is structurally equivalent. Therefore, all the computational
phases remain uniform despite the irregular choice of pivot
location during adaptive pivoting.

4. ERROR IDENTIFICATION

4.1 Mathematical Foundation
We have incorporated a new error propagation model

to perform tracing between the phases. The resulting
scheme called inter-phase checksum (IPC) can dynami-
cally detect the exact prognosis of the fault as they occur.
Previously, some researchers [5,7] have used checksum
as the tracer computation to perform fault detection at the
end of phases.

The IPC Computing Scheme: The proposed orga-
nization of the tracer computations has the following three
characteristics; these are (i) simple and concurrently
executable, (ii) phase computations are same as the orig-
inal computations, thus no load imbalance occurs, (iii) the
IPC data-dependency uses the original communication
pattern of the target algorithm.

� A IB

−CI 0

1 ≤ i , j ≤ n

IPC requires an additional row and column (guard) to
store and process the checksum elements. We label these
as sth row and rth column. The wrapped mapping on the
torus structure and the implicit computation of the B and
C vectors require a compounded update scheme to guar-
antee the preservation of the checksum property in the
target algorithm. Equations A.1 and A.2 provide the initial
value to the guard elements and equations A.3 through
A.10 provides the modified update equations.

At any kth phase, 1 k n, the modified phase compu-
tation, is specified in Equations A.3 to A.10. Let us
assume, that at the kth phase the pivot is apq.k, where,

in the element space.
On the pivot position:

On the intersections of the pivot and guard rows and
columns:

In all other positions of the pivot row i.e.,
,

Similarly, in all other elements of the pivot column,
i.e., when, ,

On the intersection of guard row and column:

On the guard row, i.e., when, ,

Similarly, on the guard column, i.e., when,
,

For all other elements aij, i.e., when,
an elimination is

performed on it as shown below:

Preservation of Checksum: Below we show how the
computations specified by (A.1) to (A.10) guarantee the
preservation of checksum after each phase updates.

Theorem 3: At the end of the phase computation
specified by (A.1) to (A.10), the IPC rows and columns
maintain the checksum property if the involved compu-
tations are correct.

Proof: Let, apq be the phase pivot and rth column and
sth row are the guards, where, . The proof is
in three parts. We show the preservation of the checksum
property at (i). position (p,s), and (r,q), (ii). all other
elements on the sth row and rth column except (r,s), and
(iii). at position (r,s).

For part (i), from equation A.4;

In a similar way it can be proved that,

For part (ii), we will first show that an element on the
guard column arj, when, , from equation (A.9),

In a similar way it can be shown that the elements on
the guard row air is, when preserves the
checking property or,

aij .k + 1 = aij .k −
apj.k.aiq.k

apq.k
….(A .10)

ais = ∑
j ≠ r

j ∈ ∇
aij arj = ∑

i ≠ s

i ∈ ∇
aij

ars = ∑
i ≠ s

i ∈ ∇
∑

j ≠ r

j ∈ ∇
aij ….(A .1)

p ,q ,r ,s ∈ ∇

≤ ≤

p ∈ ∇ , p ≠ r ,q ∈ ∇ ,q ≠ s

aps.k + 1 = cq

1 −

aps.k − bp

apq.k

=
cqbp

apq.k
+

cq

apq.k

 apq.k − ∑
j ≠ s

j ∈ ∇
apj.k

= apq.k + 1 +
cq

apq.k

 apq.k − ∑
j ≠ s , j ≠ q

j ∈ ∇
apj.k − apq.k

= apq.k + 1 + ∑
j ≠ s , j ≠ q

j ∈ ∇

−

apj.kcq

apq.k

= apq.k + 1 + ∑
j ≠ s , j ≠ q

j ∈ ∇
apj.k + 1 = ∑

j ≠ s

j ∈ ∇
apj.k + 1 ∅

apq.k + 1 =
bp.cq

apq.k
….(A .2)

arq.k + 1 = −bp

1 −

arq.k + cq

apq.k

….(A .3)

aps.k + 1 = cq

1 −

aps.k − bp

apq.k

….(A .4)

i ∈ ∇ , i ≠ p , i ≠ r

aiq.k + 1 =
aiq.k.bp

apq.k
….(A .5)

arq.k + 1 = −bp

1 −

arq.k + cq

apq.k

= ∑
i ≠ r

i ∈ ∇
aiq.k + 1 ∅

j
� ∈ ∇ , j ≠ q , j ≠ s

apj.k + 1 = −
apj.k.cq

apq.k
….(A .6)

j
� ≠ q , j ≠ sars.k + 1 = (ars.k + cq − bp)

−
(arq.k + cq) (aps.k − bp)

apq.k
….(A .7)

arj .k + 1 = arj .k −
apj.k

apq.k
(arq.k + cq)

= ∑
i ≠ r

i ∈ ∇
aij .k −

apj.karq.k

apq.k
−

apj.kcq

apq.k

= ∑
i ≠ r ,i ≠ s

i ∈ ∇

aij .k −

apj.kaiq.k

apq.k

+ 0 + apj.k + 1

= ∑
i ≠ r

i ∈ ∇
aij .k + 1 ∅

i ∈ ∇ , i ≠ p , i ≠ r

ais .k + 1 = ais .k −
aiq.k.(aps.k − bp)

apq.k
….(A .8)

j ∈ ∇ , j ≠ q , j ≠ s

arj .k + 1 = arj .k −
apj.k(arq.k + cq)

apq.k
….(A .9)

i ≠ p , i ≠ ri ∈ ∇ , j ∈ ∇ , i ≠ p , i ≠ r , j ≠ q , j ≠ s

For part (iii) we will use the result of part (i) and (ii).
Starting from equation (A.7),

The following three corollaries of theorem 2 and 3
provides validity of the resultant computation.

Corollary 1: Given a linear system AX=B of order n,
and, c1= c2 = ... cn =1 , and b1= b2 = ... bn =1 the
computational scheme specified by equations (A.1) to
(A.10), computes the inverse of A of the linear system at
the regular computational space with mapping
specified by Theorem 2.

The similarity of phase computation in the regular row
and column with the computation scheme of section 2.2
provides the proof for this corollary.

Corollary 2: Given a linear system AX=B of order n,
and, c1= c2 = ... cn =1 , the computational scheme specified
by equations (A.1) to (A.10), computes the solution of the
linear system at the guard row ais, when, .

Proof: From part (i) of theorem 3, we know;

By induction at the end of nth phase,

At the end of nth phase, we have already shown that
the elements aij.n, where, , repre-
sent the elements of the transpose of the inverse matrix,
appropriately multiplied by the elements of the row matrix
B. Thus, the guard row is equivalent to the 7th phase of the
original computational procedure. Thus, this row provides
the solution of the linear system.

Corollary 3: Given a linear system AX=B, and a row
matrix C, the computational procedure specified in the
equations (A.1) to (A.10), at the end of nth phase, computes
the linear combination of the system variables CX at ars.

Proof: From part (iii) of the theorem 3, we know,

From induction as before, we can say at the end of nth

phase,

Corollary 2, and 3 demonstrate the well-knitted
compactness of the combined computational scheme. For
the problem forms (ii) and (iii) the 7th of the original
scheme (section 2.2) is no longer required. The results are
automatically computed at the guard elements.

4.2 Error Detection Vector and Matrix
At the end of each phase, row and column wise

aggregation provides two vectors called as Error
Detecting Vectors (EDVx for row and EDVy for column).
If (p,q) is the phase pivot then at the end of dual wavefront
sum phase these vectors respectively appear as a row and
column intersected at

position. The col-

lection of EDVs augmented over all the phases provide
two matrices called as Error Detecting Matrices (EDMx
and EDMy). No two EDV(i), where i is the phase index,
appears on the same row and column. Thus, two floating
variables per element can distributedly store the EDMs.
EDMs contain the complete trace of error. EDM, based
on the following spatio-temporal state model of matrix
error propagation, is used to dynamically detect, analyze
and correct the possible occurrences of errors inside the
operating algorithm.

4.3 Error Propagation Model
Definition of Space: A space is defined as a tuple of

x and y coordinates. The total computational space ∇ has
all the rows and all the columns used in the above
computation, which has a size of (n+1)x(n+1). At any
phase k, where 1 k n, this space is divided into the
following 4 tuple sub-spaces: (i) guard space , (ii) the
pivot space , (iii) the computed space , and (iv)
theuncomputed space . These are defined as follows:

Definition 1: The guard space is defined by the guard
row and column, i.e., .
remains static through all the phases.

Definition 2: The pivot space is defined by the pivot
row and column at kth phase.

Definition 3: The computed space represents all the
rows and columns, which has been selected as pivots. It
is an incremental space which increases with phase. It is
defined as, , and

Definition 4: The uncomputed space represents the
rows and columns (except the checksums) which has not
been used as pivot row and column in past and present
phases. It is an decremental space. It is defined as,

, and .

The total computational space is the intersection of all
these 4 sub-spaces, or,

ais .k + 1 = ∑
j ≠ s , j ≠ q

j ∈ ∇
aij .k + 1 ∅ ars.n = ∑

j ≠ s

j ∈ ∇
∑

i ≠ r

i ∈ ∇
aij .n

ars.k + 1 = ars.k + cq − bp −
(arq.k + cq) (aps.k − bp)

apq.k

= ∑
i ≠ r

i ∈ ∇
ais .k − ∑

i ≠ r

i ∈ ∇ aiq.k

apq.k
(aps.k − bp) − bp + cq

1 −

aps.k − bp

apq.k

= ∑
i ≠ r ,i ≠ p

i ∈ ∇
ais .k + 1 + aps.k + 1

= ∑
i ≠ r

i ∈ ∇
ais .k + 1 = ∑

i ≠ r

i ∈ ∇
∑

j ≠ s

j ∈ ∇
aij .k + 1 ∅

�

(p + n)
2

mod(n + 1) ,

(q + n)
2

mod(n + 1)

(∇ − ∇ s)

i ≠ p , i ≠ r ≤ ≤
∇ s

ais .k + 1 = ∑
j ≠ s

j ∈ ∇
aij .k + 1

∇ p(k) ∇ c(k)
∇ u(k)

∇ s

ais .n = ∑
j ≠ s

j ∈ ∇
aij .n

aij .k ∈ ∇ s, if i = r or j = s ∇ s

∇ p(k)
i ∈ ∇ , j ∈ ∇ , i ≠ r , j ≠ s

∇ c(k)

∇ (1) = ∅ ∇ c(k + 1) = ∇ c(k) ∪ ∇ p(k)∇ c(k)

∇ u(k)

∇ u(1) = ∇ − ∇ s ∇ u(k + 1) = ∇ u(k) − ∇ p(k)
ars.k + 1 = ∑

j ≠ s

j ∈ ∇
∑

i ≠ r

i ∈ ∇
aij .k + 1

∇ = ∇ s ∪ ∇ p(k) ∪ ∇ c(k) ∪ ∇ u(k)

Fig-1

Fig-2

In the definition above, and the formalism below,
is not necessarily geometrically con-

nected and contiguous. However, for simplicity of illus-
tration Fig-1 assumes a principal forward diagonal pivot
order (PFD) which makes them contiguous at any phase.

Error Classification: There can be 7 basic category
of errors depending on their location of occurrence in the
computational space defined above. Any possible single
computational error falls into one of these classes. Below
we describe these errors. Fig-1 shows their location.

Type 1: Error at , where , and .
Such error results in non-zero error pattern at the inter-
section of the .

Type 2: There are two symmetrical situations. Case 2.1
is where error occurs at , where , and

. Case 2.2 is its symmetric situation.

Fig-3

Type 3: This case also has two symmetrical situations.
Case 3.1 is where error occurs at , where ,
and . Case 3.2 is its symmetric situation.

Type 4: When the error occurs at , where
and .

Type 5: Case 5 also has two symmetrical situations.
Case 5.1 is where error occurs at , where ,
and . Case 5.2 is its symmetric situation.

Type 6: This type of error occurs at , where
, and . This, has three sub-classes. In

case 6.1, at some later phase, location (i,j) becomes the
pivot position. In case 6.2.1, later on first i becomes the
pivot row in subclass before j becomes the pivot col-
umn. Case 6.2.2 is the symmetric situation of 6.2.1
when only j becomes the pivot row before i becomes the
pivot column.

Type 7: This type of error occurs at , where
 and . This is an error on the guard

row and column. This has three subclasses, Case 7.1 is
where the error is on ars. Case 7.2.1 is where the error is
on the guard column. Case 7.2.2 is where the error
occurs on the guard row.

Out of these 7 classes of errors, catastrophic cancel-
lation in finite precision arithmetic can cause errors of
class 4, 5, 6 and 7. Because, only the updates in these
classes involve addition or subtraction.

Metamorphosis of Error: A single computational
error goes through the three distinct states: (i). Point (PE),
(ii). Vector (VE) and (iii). Matrix (ME), with phase. Fig-2
shows the state transition diagram.

1

2.1

2.1

3.1

3.2

4

5.1

5.2

6

Pivot Guard

SPATIAL ERROR CLASSIFICATION

n+1

n+1

7.
2.

1

7.2.2 7.1

Pivot Propagation

FAULTY EDV PATTERNS

n+1

n+1

n+1n+1

(a) Point Error

(c) Vector Row Error (d) Matrix Error

(b) Vector Column Error

EDVx

E
D

V
y

EDVx

E
D

V
y

PE
ME

VE

VEc

r

ERROR STATE TRANSITION MODEL
aij .k i ∈ ∇ p(k)

j ∈ ∇ u(k)

aij .k i ∈ ∇ c(k)
j ∈ ∇ c(k)

aij .k i ∈ ∇ c(k)
j ∈ ∇ u(k)

aij .k

i ∈ ∇ u(k) j ∈ ∇ u(k)

∇ c(k), or ∇ u(k)

aij .k

i ∈ ∇ s(k) j ∈ ∇ s(k)

aij .k i ∈ ∇ p(k) j ∈ ∇ p(k)

∇ p(k)

aij .k i ∈ ∇ p(k)
j ∈ ∇ c(k)

A single error originates as a PE. If the error occurs at
aij.k, at kth phase, then two of the checksum elements
become non-zero like figure 5(a). A Point Error may
propagate and expand into a VE if at some later phase l,
the row (or column) corresponding to the element is
selected as the pivot row (or column). Fig 5(b) and 5(c)
show the EDV pattern corresponding to a VE. A PE can
change into a ME in two ways, first, (i) if a point element
is chosen as the pivot, or (ii). if a row (or column) of VE
is chosen as pivot row (or column). Figure 5(d) shows the
error pattern corresponding to the ME.

4.4 Error Identification
Each of the error states generates a distinct pattern in

corresponding EDVs by which they can be precisely
identified. Errors, of the first six classes can be identified
at the originating phase in the PE. If the originating phase
is k, then the EDV(k) will look like the Point Error Pattern.

An error of class 1, 2 and 4 remains in the point state
for the rest of the computational phases. Because, both of
its coordinates are in , for all future
phases. Thus, for these classes of errors, all EDV(i), where
k i n resemble Fig-3(a).

An error of class 3 and 5 at phase k remains in PE state
until a later phase l, when the element in error appears on
the pivot row (or column). At this phase, it transforms into
VE state. However, since after that .
Therefore, for the remaining phases EDV(i), i>l looks like
Fig-3(b) or (c).

An error of Class 6 remains in the PE state until phase
l, when it appears on the pivot row (or column). Just as
before, it changes to VE state and remains in that state
until a later phase m, l m, when the original point in error
appears on the pivot column (or row). However, if m=l,
then error of class 4 directly transforms to ME from PE
state.

An error of Class 7 also follows similar transforma-
tions. However, since, an error element in guard column
(or row) can only be part of a pivot row (or column), but
not both, row and column, therefore, an error in this class
never transforms into ME state. Such error is reflected as
a single element error either on EDVx or on EDVy.

4.5 Error Correction
If an error is in PE state, it can be corrected at any phase

i by adding the non-zero element of the EDVx(i) or
EDVy(i) to the element. The element can be traced by the
orthogonal propagation of two error markers initiated by
the non-zero EDVx(i) and EDVy(i) nodes. Similarly, if an
error is in VE state, if it is a row error, then it can be
corrected by adding EDVx(i) to it. If it is a column error,
then it can be corrected by adding EDVy(i) to it. However,
once an error reaches ME state, it can not be corrected
efficiently. In such a case, it is wise to recompute.

Errors of type 1, 2, 3, 5 and 7 never expands to ME
state. Therefore, no in-phase correction is required for
these classes. In the overlapped 7th step these errors can
be corrected directly. Only errors of class 6 require
in-phase correction. However, the urgency of error cor-
rection, in such case depends on the phases k, l, and m

during which it one by one transforms to PE, VE and
finally into ME states. The error must be corrected before
mth phase. If we intend to correct class 6 errors, then at the
detection of class 6 error an error correction wave should
be initiated. This is generally straightforward, but costly.

The processors can partially detect the class of any
error independently. (Complete class detection requires
consultation between the EDVx EDVy nodes). Therefore,
the processor(s) possessing non-zero checksum(s), can
adopt a lazy policy of restraining in-phase error correction,
unless the purity of computation is really threatened.
Since, at any phase k, all the processors algorithmically
come to know , there-
fore, they can detect whether it is in class 2, 5 or 6 by
maintaining only two flags locally. Each of the processors,
sets own x and y flags when it is selected as the pivot row
or pivot column. If any of the flags isunset on the non-zero
checksum element, then the corresponding error may fall
into class 2, 5 or 6. In that case, it may initiate correction
wave as a precautionary measure if rigorous error cor-
rection is intended.

4.6 Communication Structure
The incorporation of this fault-detection scheme

potentially adds three types of communication costs.
Below we show, how each of these is optimized.

(a) Data dependency: the data dependency of the
equations A1..A10 can be satisfied using exactly the
communication pattern of the original computation
scheme, thus, it does not add any communication cost to
the original algorithm.

(b) Detection wave: the dynamic IPC scheme verifies
the checking property at the end of each computational
phase by initiating a checksum wave after each phase This
wave can be completely merged with the regular com-
putational wave. In this technique, the vertical phase of
the regular wave carries the column checksums and the
subsequent horizontal phase carries the row checksums,
along with the regular data elements. In double wave front
communication, two partial sums propagate in the two
directions. Thus, resulting IPC detection scheme remains
almost transparent.

Conventional but less rigorous end-of-phase checking
scheme requiring only one checksum wave at the last
phasecan also be used where error correction is not prime.
This scheme squeezes the phase width by one floating
point operation besides the bandwidth saving. This
scheme, as shown by corollaries 2 and 3, fully overlaps
thedetection wave with the step 7 of the original procedure
(section 2.2).

(c) Correction wave: Only type 6 error should be
corrected within a deadline. Other classes of errors can be
corrected at the end of computation using a lazy scheme.
The cost of error correction is not generally critical to the
overall performance of the algorithm. Because, such
correction is occasional. As we have already shown, the
cost of error detection, which must be incurred regularly
irrespective of the occurrence of error, is almost negligible
to our advantage.

∇ p(i) and ∇ c(i), where i ≤ k

∇ c(i), where i > k

≤ ≤

i , j ∈ ∇ c(l + 1)

≤

The Double Wave Front Algorithm

int k=0, s=n, p_count=n; send(v,0:north); if(s==j) v=v-b[px]; if (j==ss) {
int xphase[],yphase[],xx,yy; send(v,0:west); recvb(u,s1:vert_src);
getpid(i,j); v=cb/v; send(v,sum:south); recvb(u,s2:vert_src);

 } send(v,0:north); y_sum[k]=s1+s2+v;
/* Loop for n phases*/ recvb(p,sum:vert_src); }
while(p_count) { /* If the Node is Pivot Row*/ sum=sum+v; if(y_sum[k]||x_sum[k])
 px= xphase[k]; elseif(py==j) { if(p==ABORT) { error();
 py= yphase[k++]; recvb(p,sum:horz_src); xphase[k]=px; v=v-u*l;
 rr= .5*(px+n) mod (n+1); sum=sum+v; yphase[k++]=yx; }
 ss= .5*(py+n) mod (n+1); if(p==ABORT) { p_count--;

 xphase[k]=px; } /* For Other Non EDV Nodes*/
 set_orientation(i, px, yphase[k++]=yx; send(p,sum:vert_dst); else {
 &vert_dst, &vert_src); v=ABORT; v=-v*c/p; recvb(l,s:horz_src);
 set_orientation(j, py, p_count--; if(s==j) v=v+c[px]; s=s+v;
 &horz_dst, &horz_src); } yy=k; if(u==ABORT) {

 if(i==r) then v=v+c[py]; } xphase[s]=px;
/* If the Node Phase Pivot*/ v=v/p; yphase[s++]=yx;
 if(px=i and py=j) { send(v,sum:east); /*If the Node is on EDV*/ p_count--;
 if(v <= thres) { send(v,sum:west); else of (i==rr ||j==ss) { }
 v= ABORT; send(p,sum:horz_dst); if (i==rr) { send(l,s:horz_dst);
 xphase[k]=px; xx=k; recvb(l,s1:horz_src); recvb(u,s:vert_src);
 yphase[k++]=yx; if(i==r) v=v-b[py]; recvb(l,s2:horz_src); s=s+v;
 p_count--; } x_sum[k]=s1+s1+v; s]end(u,s:vert_dst);
 sum=v; if(l==ABORT) { if(i==r & j==s)
 } /* If the Node is Pivot Column*/ xphase[k]=px; v=v-u*l;
 send(v,sum:south); elseif(px==i) { yphase[k++]=yx; }
 send(v,sum:east); sum=v; p_count--; if(i==r || j==s) v=-v;

 } }

Fig-4

Fig-5 Fig-6

10 30 50 70

SPEEDUP CHARACTERISTICS

MATRIX SIZE

S
P

E
E

D
U

P
 (

T
p
/T

s
)

(without IPC error)
15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2x2 Torus

3x3 Torus

4x4 Torus

5x5 Torus

EFFECT OF ADAPTIVE PIVOTING

PIVOT SEQUENCE IN SUCCESIVE PHASES

E
X

E
C

U
T

IO
N

 T
IM

E
 (

m
s
e
c
)

00-11-22-33 00-22-33-11 00-22-11-33 00-33-22-11

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

MONO-WAVEFRONT DUAL-WAVEFRONT

5. THE ALGORITHM
The algorithm generates a series of successive wave-

fronts. Eachoriginates at a phasepivot and then propagates
in all four directions. As shown in Fig-2, within each
phase, each of the nodes transmits message packets
containing U/V and L, and S (checksum) to its neighbors
and performs update specified in equations A1..A10.

Adaptive Pivoting: If there is any zero pivot, it is
skipped and the phase computation proceeds from the next
pivot position chosen according to a default order. Gen-

erally, any diagonal order is recommended as default,
because it has the minimum inter phase initiation gap
(which is more critical than the phase-width for the
performance of wave algorithms).

Error Tracking: In case of finite precision floating
point error, if a node with non-zero EDV detects an error,
then it starts tracking the error and its state transition. This
tracking is completely local because eventually every
node algorithmically receives the location of the pivot. If
the row (or column) of the error sensing element has been

selected as a pivot row (or column) then it is in .
Therefore, it waits till the end phase. On, the other hand,
if it is in , then it initiates necessary communication for
error correction. However, the error correction wave lags
the computation wave by one phase.(It is possible to
rearrange the phase computations so that it will lag by half
phase). Therefore, when the error is of class 6.1, and
k+1=l=m, then error cannot be corrected. (A modified
scheme can correct such errors, but it requires rollback).

Pseudo-Code: Fig-4 presents a pseudo code (like C)
version of the algorithm. At the beginning of each phase,
the set_orientation() routine finds the vertical and hori-
zontal source and destination neighbors for each node
depending on their own relative position w.r.t. the current
pivot. Since, several pivot selection strategies can be used
for adaptive pivoting, we have assumed xphase[] and
yphase[] arrays are supplying the pivot positions. For
solving problems (ii) and (iii) a sum phase should be added
at the end. The final identities of the elements are in local
variables (xx,yy). If a non-zero sum is detected, then the
error correction scheme is initiated by the abstract routine
error().

6. PERFORMANCE
6.1 Complexity Analysis

If the matrix size in nxn and the torus space is pxp,
then, using block decomposition each of the processors
gets a mxm block matrix, and assuming the total com-
munication time to be , i.e., it is
the sum of packing, channel and unpacking time, then the
total parallel time becomes:

In the maximally parallel decomposition with 1:1
folding ratio, with p=n+1, and m=1, on (n+1)x(n+1) torus,

This performance is better than the algorithms based
on i. Gauss-Jordan, ii. Gauss-Seidel and iii. LU decom-
position for each of the three problem forms [9]. On the
basis of above equation, when , the optimum folding
ratio 1: m opt is given by:

6.2 Performance on Meiko
We have implemented the dual wavefront algorithm

with flexible order pivoting and tested its performance on
a 32 node Meiko Transputer. Fig-5 shows the relative
speedup with the variation of the matrix size for four
different torus configurations. We varied the matrix size
from 10x10 to 80x80 and used block decomposition. As
shown by the overall flat nature of the curves, the imple-
mentation demonstrated sustained scalability.

Fig-6 shows the effect of adaptive pivoting on execu-
tion cost. According to the AP scheme, the pivots are
selected at run time. However, for demonstration purpose,
in this experiment, we have used 4 different pre-defined
pivot sequences (marked at x-axis) and observed the
computation time for both mono and dual wavefront

versions of the algorithm. The experiment indicates that
the occasional disruption from the PFD, due to adaptive
pivoting will have negligible effect on the overall system
performance. Fig-6 also shows the improvement due to
double wavefront communication over usual single
wavefront communication.

7. CONCLUSION
Adaptive pivoting replaces the classical row inter-

change for improving numerical stability. This new piv-
oting can effectively guard against zero pivot. However,
guarding against small pivots still requires additional
O(nlogn) parallel comparison steps similar to other clas-
sical pivoting schemes. Nevertheless, our adaptive piv-
oting saves the traditional interchange required after the
sorting. The theoretical effectiveness of AP is equivalent
to that of full orpartial pivoting [11,3], but is more parallel.

IPC is a corrective approach to stability. One of the
key unresolved issue is whether such corrective measure
can outweigh the preventive methods (such as LU
decomposition). The dynamic nature of IPC makes the
direct comparison extremely hard.

8. REFERENCE
[1] Faddeeva, V. N., Computational Methods of Linear

Algebra, Chapter 2, Translated by C. D. Benster,
Dover Pub., New York 1959.

[2] Gill, P. E., W. Murray & M. H. Wright, Numerical
Linear Algebra and Optimization, v. 1, Chapter 3
& 4, Addison-Wesley Publishing Company, Cali-
fornia 1991.

[3] Golub G. H. & C. F. V. Loan, Matrix Computations,
The Johns Hopkins University Press, Maryland,
1985.

[4] Heller, D., "A Survey of Parallel Algorithms In
Numerical Linear Algebra", SIAM Review, Vol 20,
no 4, October 1978.

[5] Huang K. H. & J. A. Abraham, "Algorithm Based
Fault Tolerance for Matrix Operations", IEEE
Trans. on Comput., Vol c-33, No.6, June 1984.
pp-518-528.

[6] Kant, R. M. & T. Kimura, "Decentralized Parallel
Algorithms for Matrix Computation", Proc. 5th
Annual Symposium of Com. Arch., pp96-100, 1978.

[7] Khan, J. I., W. Lin & D. Y. Y. Yun, "A Parallel
Matrix Inversion Algorithm on Torus with Adap-
tive Pivoting", Proc. 21st International Conference
on Parallel Processing, Chicago, August 1992,
v-III, pp69-72.

[8] Lin W.,T. L. Sheu & J. I. Khan, "A Parallel
Fault-Detection Scheme for Matrix Inversion",
Proc. ISMM Int. Conf. on Parallel and Distributed
Computing and Systems, Pittsburgh, October 1992,
pp394-398.

[9] Modi, J.J., Parallel Algorithms and Matrix Com-
putation, Oxford University Press, Oxford, 1988.

[10] O’Leary, D. W. & G. W. Stewart, "Data Flow
Algorithms for Parallel Matrix Computations",
Communications of the ACM, V. 28, no.8,
pp.840-853, August 1985.

[11] Wilkinson, J. H., "Error Analysis of Direct Methods
of Matrix Inversion", J. Assoc. Comp. Mach. 8,
p281-330, 1961.

∇ c

∇ u

tcomm = tsend + tchannel + trecv

Tparl = (p − 1) {m(m2tcomp + 4tsend) + 2(tcomm − tsend)} + (p − 1)tcomm

Tparl = n(tcomp + 2tsend + 3tcomm)

p 1

mopt =

î

3tcomm − 2tsend

2tcomp

1

3

