
Published in the Proceedings of the
5th International Conference on Software Maintenance

ICSM ’94, Victoria, Canada, 1994

DESIGN EXTRACTION BY
ADIABATIC MULTI-PERSPECTIVE ABSTRACTION

Javed I. Khan

Department of Electrical Engineering
University of Hawaii at Manoa
Holmes 493, 2540 Dole Street

Honolulu, HI-96822
javed@wiliki.eng.hawaii.edu

(808)-956-7249
(808)-941-1399(FAX)

ABSTRACT

Design extraction of an unfamiliar system is a complex cognitive task. This paper presents an
approach that can help human expert in exploring a large and complex code information space of an
unfamiliar software. It provides her/him a platform to access the code information with flexible, fine and
delicate control over volume and composition of the accessed information sub-space. The proposed
approach integrates two forms of abstraction. First, it helps to comprehend complexity of the code
information space by allowing explorer to investigate the system from numerous (combinatorial) coherent
perspectives. In the second level, it helps to overcome scale of the information space by allowing explorer
to compress or expand any composition of its sub-spaces. This new approach, named as adiabatic
multi-perspective (AMP) approach to program abstraction, is founded on a symmetrical dual
hierarchical (SDH) organization of code information space and a novel formalism for abstract
dependency analysis (ADA), which is also one of the first formalism to perform complete program
dependency analysis on abstract program models.
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Abstract
Design extraction of an unfamiliar system is a complex

cognitive task. This paper presents an approach that can
help human expert in exploring a large and complex code
information space of an unfamiliar software. It provides
her/him a platform to access the code information with
flexible, fine and delicate control over volume and compo-
sition of the accessed information sub-space. The proposed
approach integrates two forms of abstraction. First, it helps
to comprehend complexity of the code information space by
allowing explorer to investigate the system from numerous
(combinatorial) coherent perspectives. In the second level,
it helps to overcome scale of the information space by
allowing explorer to compress or expand any composition of
its sub-spaces. This new approach, named as adiabatic
multi-perspective (AMP) approach to program abstraction,
is founded on a symmetrical dual hierarchical (SDH)
organization of code information space and a novel for-
malism for abstract dependency analysis (ADA), which is
also one of the first formalism to perform complete program
dependency analysis on abstract program models.

1. Introduction
Designextraction of an unfamiliar system isa challenging

cognitive task and lies at the fringe of current research in
Knowledge Engineering. Such exploration, particularly in
the case of software engineering, quite often becomes a
formidable mental exercise, because of the scale and com-
plexity of the unknown system.

Let us first consider the difficulty originating from the
complexity. Classical reverse engineering uses various dia-
grams such as control-flow graph, petri-nets, call graph, slice
[10,11,15,19], etc., to visualize a software system. In
isolation, none of these views is sufficient to encapture the
complexity of the overall system. However, collectively each
helps at least in dividing the overall complexity of the
underlying system. The ability to visualize from such
multiple perspectives plays a key role in understanding
complex systems. Cognitivically, it is a divide and conquer
strategy to win over complexity. Therefore, a clean mecha-
nism for abstraction in the sense of multi-perspective visu-
alization of the target information space may be considered
an essential part of any effective design extraction platform.
However, one of the critical cognitive tasks performed by a

human expert during the process of design extraction is to
correlate the concepts across the perspectives. Therefore, the
effectiveness of the multi-perspective visualization also
depends on the mutual coherency across the perspectives.

A second level of difficulty in design comprehension
arises from scale. Sheer scale can easily make even a
relatively simple system (or a singly isolated perspective of
a complex system) incomprehensible. In forward engineer-
ing, scale affects mostly quantitatively. Because, the target
system is generally a machine. But, in reverse engineering,
the purpose is to produce effective process perception in
human expert. As a consequence, the size of the visual and
mental information can seriously affect the quality and
efficiency of human understanding. Therefore, a design
extraction tool for real scale software systems should also
provide abstraction mechanism in the sense of volumetric
reducibility of the perspectives.

In essence, the effectiveness of a design extraction
platform will critically dependon the flexibility andease with
which design information can be abstracted both in the sense
of generating coherent perspectives and their volumetric
control.

In the past years, researchers from diverse application
objectiveshave proposed a significantnumber of approaches,
which in various ways address the two essential aspects of
design extraction. Such as Miyamoto et. al. [10,11] proposed
about a dozen views (perspectives) to extend multi-
perspective visualization beyond the classical few. However,
in this and many other similar attempts [2,16,17], no serious
consideration was made towards volumetric reducibility of
these views. On the other hand, Basili et. al [1] proposed
formal validation based approaches to create concise speci-
fication of a program mainly to facilitate debugging and
testing during forward engineering. Howden [5] used a
formal comment based approach to express a program in
condition:action format. However, most of these formal
approaches (also known as logical abstraction), compress a
few highly sophisticated but rigid perspectives, mostly at a
pre-engineerined abstraction level. In essence they lack
flexibility, which is very important from design extraction
point of view.

1 Part of this work has been conducted at and supported by the Software Engineering and Research Laboratory (SERL), Information and Computer
Science Department, UH.



More recently, a number of researchers proposed models
based on function hierarchy [3,4,12,18,20]. Such as CIA by
Chen, Nishimoto and Ramamoorthy [3], provides a formal-
ism to understand macro model of program file and sub-
routine structures for C programs. A similar hierarchical
approach RIGI, by Muller, Tilley et. al.[18] specifically
targets large scale software systems. However, most of such
hierarchical approaches are rather function-centric. They
only provide some reducibility on some variant of function
views, and do not organize or abstract data space. While, it
is well known that in an unfamiliar code, bulk of the
unfamiliar text is generally due to data items. Thus, in design
extraction, the understanding inside the data space and their
relation to function space is at least equally critical if not
more. Most of these approaches provide no abstraction in
data space.

An integrated platform, that could provide general as well
as flexible reducibility over a wider range of constructible
program views remained illusive because of two reasons.
Firstly, due to the lack of similar decomposable organization
of the data space of a program. And more importantly,
because of the lack of any suitable formalism that could
abstract the general dependency relating program and data
[9]. In fact, many of the hierarchical approaches, such as
RIGI[18], which claim handling of large scale software
systems, actually manage only macro-aspects, a narrow
range in overall scale spectrum. This range generally has only
program-files and function-modules, with fairly straight-
forward data dependency involving mostly data-files. The
lack of suitable abstract dependency analysis formalism
restricts such approaches from widening the scale spectrum
to finer entities involving instructions or even instruction
segments, which are quite often connected by more complex
data dependencies.

In this paper, I present a program information abstraction
approach, which attempts to fill up this missing piece in
reverse engineering research. The proposed formalism
facilitates human exploration inside an unknown software
system by employing divide and conquer strategy simulta-
neously over the complexity as well as on the scale of the
target system. The approach is principally based on (i)
organization of both function and data information space in
the form of two symmetric dual hierarchies (SDH), and (ii)
the formalism for abstract dependency analysis (ADA).
The SDH organization allows efficient storage and access to
any part or whole of the program information space with
flexible reducibility. The ADA formalism connects the
entities of the two hierarchies irrespective of their level of
abstraction. This paper presents the combined approach and
shows how it provides an opportunity to flexibly generate
various program perspectives at pliable dimensions.

In the rest of this paper, this integrated approach will be
referred to as adiabatic multi-perspective2 (AMP) approach
to abstraction. A platform which realizes the approach is
named as program information abstraction system

(PIAS). Following section first outlines the central notion of
program information abstraction as used in this work. Next,
section 2 and 3 present the SDH organization. Section 4 and
5present the ADAformalism. Finally, section6 demonstrates
application of this system in accessing, exploring and ana-
lyzing various program aspects with flexible abstraction.

2. Program abstraction
There exists a significant amount of work related to program
abstraction. Surprisingly, it is very hard to find any clarifi-
cation of this important concept in related publications.
Therefore, I will briefly pause to outline the very notion of
program abstraction as used in the approach.

Definition (program abstraction): Program abstrac-
tion is a process by which a program is presented in a concise
form, that facilitates program understanding by
emphasizing the significant information of the target pro-
gram.

In this model, information refers to the code knowledge
that can be obtained or deduced solely from the information
present at the source code (target software). It is also assumed
that sufficient contextual knowledge is available about the
source code language(s). However, no expectation is made
about the availability of programmer’s domain knowledge
on the application.

Compaction and selection are the two basic means of
reducing information [8]. Compaction process uses all the
components to generate the synthetic concise abstract. On
the other hand, selection process presents only some specific
components and hides the rest to generate the concise
abstract.

The relative significance among various components of
information is dependent on the intended use of the generated
abstract. Therefore, instead of assuming or imposing any
fixed model of relative significance on the various compo-
nents of information, AMP approach is to provide a flexible
interface so that the human user can flexibly specify/change
the preference model, and generate corresponding abstract.

3. Information organization
The objective of SDH organization is to arrange the total

information space in such a way, so that any component or a
logical composition of it can be accessed, processed and
abstracted (by compaction and selection) efficiently with
convenience and flexibility.

The Components of Program Information: In AMP
approach, a code (P) is viewed as a collection of two sets of
principal entities; (i) instruction I(P), and (ii) data D(P).
Considering spatial and temporal distinctions, two entities
can be inter-related in at most five different manners. For this
case these are; (iii) auto-relation between two instruction
entities (P) in space, (iv) auto-relation between two

instruction entities (P) in time, (v) auto-relation between

two data entities (P) in space, (vi) auto-relation between

Σs

Σt

Φs

2 The term adiabatic refers to the volumetric compressibility/expandability of any aspect of the program information space
with minimum loss of dependency information.



two data entities (P) in time, and finally (vii) inter relation

betweenan instruction and a data entity (P). Thus a program
information space is defined as:

A complete entity relation model describing this seven
component code information space has been presented in [7].

Information Structure: The above seven component
information space is organized in the form of two symmet-
rical hierarchies involving the two principal entities (in-
struction, and data). A single monolithic source code (the
natural extension to multi-moduleprograms will be discussed
shortly) provides a base-model. PIAS accepts the base-model
as input and gradually constructs abstract data and function
entities in a bottom up fashion and organizes them into two
three-dimensional pyramidal structures named as (i) Data
Cube (D-CUBE), and (ii) Instruction Cube (I-CUBE), and
(iii) their inter-relations (LINK). These three components are
together called as SDH organization.

Fig-1 shows the D-CUBE and I-CUBE for a simple target
program P (test.p) that is made up of 7 statements (s1, s2, s3,
s4, s5, s6, s7) denoted as set I(P) and 6 data items (x, y, max,
sum, stdin, stdout) denoted as set D(P). These two hierar-
chies are structurally and conceptually symmetrical.

In Fig-1, the relations along the vertical dimension of
I-CUBE represent the spatial auto-relations between the
instructions and the horizontal dimension represents the
temporal auto-relations between the instructions. The depth
dimension represents the instruction entity attributes. Sym-
metrically, D-CUBE contains three other symmetrical
dimensions. The seventh dimension is the inter-relation
(LINK) among the two pyramids.

The leaf nodes of both the pyramids denote the concrete
entities of P (black sided in the figure). All other nodes are
abstract entities. Any abstract entity is the summary (or
abstract description) of all its children nodes. Similarly, any
relation between them is the summary of all the relations
between their children.

As evident by now, the key computational components
to this approach are: (i) how to construct I-CUBE and
D-CUBE, and most importantly (ii) how to compute abstract
LINKs. Section 4 briefly explains the hierarchy generation
mechanism. Section 5 presents the novel formalism for LINK
computation, which is in fact, is the heart of AMP. However,
before that, below I show how the above organization helps
us in flexible abstraction.

Information Compaction: Let us define the following
two concepts:

Definition (cut): A cut is defined as a set of instruction
and data entities, where each of the entities in I-CUBE and
D-CUBE is singly-included, i.e. included only once either as
itself, or as any one of its spatial-ancestors, or as all of its
spatial-children. A complete cut is one, which singly-
includes all the leaf entities of both the pyramids.

Definition (thread): The entities in a cut set, together
with inter relations among these entities, form a thread. A
complete thread is generated from a complete cut. A thread
T is thus , where

.
The number of entities at each spatial level is less than

that of the level immediately below it, both in I-CUBE and
D-CUBE. This reduction generates the opportunity of
information compaction at each abstraction level of program
representation.

Φt

Ψ

P = {I , D , Σt, Σs, Φt, Φt, Ψ}

T = {I(T), D(T), Σt(T), Φt(T), Ψ(T)}
I(T) ⊆ I(P), D(T) ⊆ D(P)

Fig-1 SDH Information Structure
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Fig-2 Abstract Representations
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Each of the complete threads across the hierarchies forms
one complete representation of the program. The average
height of the cut provides an intuitive measure of compact-
ness of that particular representation. (For example, in Fig-2
cutAismore abstract than cutB). Thepyramidalorganization
of SDH makes it possible to transcend between a multitude
of adiabatic representations by traversing up or down in the
spatial hierarchies, allowing flexible control over the pattern
of compaction. For example, when, more functional
abstraction but detailed data structural information is desir-
able, the user selects instruction entities from the upper levels
of I-CUBE and data entities from the lower levels of
D-CUBE. A symmetric inverse drift generates a represen-
tation of the same program with more data abstraction and
less instruction abstraction. At the highest level of the
hierarchies, the description of the two root entities and their
relation (a thread through the roots), becomes the maximally
abstract representation of the program P. In general, a
combinatorial number of adiabatic representations can be
formed by varying the pattern of the thread.

Definition (maximally abstract thread): For a speci-
fied set of singly-included entities, the highest (in the hier-
archies) complete thread that distinctly contains the entities
of the specified set is called a maximally abstract thread.

Information Selection: Perspectives are generated by
selection on the total information space. Any projection of
the 7-dimensional SDH on any of its sub-spaces, represents
a generic perspective. Different variants of sub-space per-
spectives can be obtained by additional selection on the basis
of (i) attributes, (ii) attribute value, and (iii) the path of
traversal.

For example a classical call-diagram is a special case of
SDH projection on sub-space, where only instruction
entities ’referenced in code’ are selected. Similarly, a con-
ceptual process model (CPM) [16] can be constructed by

selecting the projection of a thread T. The
volume of the CPM can be varied with arbitrary flexibility
by varying the thread pattern and its average height. The
constituent objects and relations (either concrete or abstract)
in all the abstract perspectives are projections from the same
underlying SDH. Therefore, all the perspectives remain
intrinsically coherent. As explained earlier, such coherency
is critical for effective design perception.

Non-Monolithic Program: Multi-module (non mono-
lithic) programs can be viewed as a partially abstracted
program, where, each of the sub-routines is a
priori-abstracted module in I-CUBE. A subroutine is an
abstraction performed by the programmer for the ease of
forward engineering. Therefore, the base-model of a multi-
module program includes not only base instruction entities
but also some entities in the upper level of abstraction. PIAS
treats an instruction, program segment, or a collection of
programs as structurally equivalent and as instances of
instruction entity.

Uniform System View: In a computer system, a partic-
ular application program is a part of larger system program.
On the other hand, the atomic statements and data items of
higher level languages themselves are abstract concepts
relative to their machine code decomposition. Thus, any
application program, subject to our understanding, is only a
cross-section (cut) of the overall abstraction hierarchies that
are both upward and downward expandable. The abstraction
machine of PIAS is intrinsically level independent and
uniform in this hierarchical space. Depending on user
requirement and availability of resources, it is technically
equipped to construct and manage the hierarchies and their
inter-relations.

Notably, most abstraction approaches [3,18], for han-
dling large systems only manage the macro aspects, and are
function-centric. Thus, these operate only in the upper region

I(T) − D(T) − Ψ(T)

I − Σs



of the I-CUBE, which itself may be only a narrow band of
the entire scale spectrum. In contrast to all these previously
proposed approaches, ADA formalism seamlessly integrates
the macro and micro aspects of large software systems.

4. Hierarchy generation

4.1 I-CUBE generation
The temporal dependency set: The SDH organization

of instruction hierarchy is obtained by recurrently clustering
sets of instructions with similar temporal dependencies
together and arranging the clusters into spatial relation
hierarchy. The temporal relation between two instruction
objects has 4 possible enumerations as shown in
Table-1.

Seeds Semantics

>> Forward sequential execution dependency
<< Reverse sequential execution dependency
| Exclusive execution dependency.
|| Concurrent execution dependency.

Table-1 Enumerations of 

Fig-5 Prime Graphs
The Algorithm: The decomposition algorithm is anal-

ogous to prime number factorization. The temporal
instruction dependency graph, generated from the base
model and data dependency analysis, is factorized into a set
of prime graphs. A prime graph is one that can not be
factorized further. Each detected prime is replaced by an
abstract node in the original graph. Theprocedure is repeated,
until it reduces to one single prime graph. If a structured code
is decomposed, it results in a set of basic prime graphs shown
in Fig-5. (F represents FORK, J represents JOIN and W
represents WAIT, and T represents test and BRANCH of
Fig-3). Decomposition of non-structured code simply results
in additional larger primes. This technique can decompose

parallel programs, detect concurrency, breakdown a long
sequence of control flow into independent decomposed
sub-sequences, (resulting in PL_N prime of Fig-5), and
remove redundant control links.

4.2 D-CUBE generation
The SDH organization of data hierarchy is obtained in a

similar way by clustering sets of data items with similar
temporal dependencies together and arranging the clusters
into spatial relation hierarchy. However, there is a small
difference. Almost all of temporal dependency isgenerally
implicit in a procedural program and is contextual to an
instruction segment. Thus, the possible enumeration set of

is much more complex (than ). Section-5 presents the

formalism for reasoning with in more detail.
SDH data space parsing technique use a procedure where

first the data model is constructed according to the static
structural hierarchy stated in the source code or derivable
from the base model. All parents are put below a root node
representing the universal data space. For each user declared
parents (context), the involved data items are classified into
four groups, (i) only read, (ii) only modified, (iii) other
references, and (iv)other locals but not referenced (to identify
unused variables). However, the static hierarchy explicitly
stated through the data declaration segment always overrides
the dynamic analysis. Fig-1 is an example of SDH organi-
zation generated by parsing the code test.p of Fig-6.

5. Abstract dependency analysis
The traditionally bi-variate ( with only read and write)

notion of dependency is inadequate to express abstract
dependency notions which may arise between abstract enti-
ties. In the general case, it is intractable to find a theoretically
sound formalism that can express, manage and process
arbitrary abstract dependencies (such as, sorting, increment,
etc.). However, AMP approach incorporates a formalism that
is sufficient to support program dependency analysis on the
abstracted models. The following sub-sections present the
new dependency set and its grammar.

5.1 abstraction

5.1.1 The Enumeration set
The dependency refers to the way an abstract data is

affected by an abstract instruction or conversely an abstract
instruction is affected by an abstract data. ADA uses three
fundamental notions of dependency, namely: read, write and
read and then write as the seed concepts for the probable
value assignment of Ψ. A set of 15 dependency concepts,
based on the three seed concepts, compounded with the
notions of may be, or, and no effect constitutes the new
dependency set. The set of 15 members is complete in a
relation field. During abstraction process, the defined trans-
formations combine these input values to synthesize a new
output value, which is also always be in the field. Table-2
provides the enumeration values and their semantics.

Φt

Σt(I1, I2)
Φt Σt

Φt

Σt
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Enumeration Semantics

R Read in the block.
W Modified in the block.
R.W Read and then modified in the block.
R⊕W Read, or modified in the block.
R⊕R.W Only read, or read and then modified in the block.
W⊕R.W Only modified, or read and then modified.
R⊕W⊕R.W Read, or modified, or read and then modified.
N No dependency.
R⊕N May be read.
W⊕N May be modified.
R.W⊕N May be read and then modified.
R⊕W⊕N May be read, or modified.
R⊕R.W⊕N May be only read, or read and then modified.
W⊕R.W⊕N May be only modified, or read and then modified.
R⊕W⊕R.W⊕N May be read, or modified, or read and then modified.

Table-2 Enumerations of Ψ

5.1.2 Abstraction in instruction space
Now the transformation rules for the abstraction of Ψ

dependency in instruction space are presented. The abstract
dependency between instruction I and data A, when
I is composed of I1 and I2 is given by the 12 production rules
given in (1). The function space is clustered on the basis of
temporal relations (Table-1).

X»X X
N»X X
X»N X
W»R W
R»W R.W
R»R.W R.W
W»R.W W
X|Y X⊕Y
X»(Y⊕Z) X.Y⊕X.Z
(X⊕Y)»Z X.Z⊕Y.Z
X⊕X X
X||Y X>>Y⊕Y>>X

An abstract node composed of more than two entities
incrementally combines the possible paths. Exclusive par-
allel branches originate from the branch statements. Only
one of the conditionally exclusive parallel paths is executed
in any single execution of the program. On the other hand,
all the mutually parallel paths are executed in any execution
of the program. For, example, a loop of TL_2 type (in Fig-5)
has two exclusive parallel sequences. Thus, its abstract
dependency to a data-item D is,

Definition (isolevel): If an abstract attribute is com-
putable only from the attribute values available, at the
maximally abstract thread containing the involved objects,
then the computation is isolevel.

As evident, the production set for is isolevel.
Isolevel characteristic is critical for any abstraction grammar.
It eliminates the expensive deep tracking to derive upper level
abstract information. It also characterizes the reusability of
the information generated through previous abstraction.

5.1.3 Abstraction in data space
Similarly, the following 6 production rules generate

, the abstract (new) dependency relations during
abstraction in data space, when data item A is composed of
A1 and A2. As evident, this grammar is also isolevel. Here
the symbol ^ indicates that both the arguments are children
of A.

X^Y Y^X
N^X X
X^X X
R^W W⊕RW
R^RW W⊕RW
W^RW W⊕RW

Fig-6 illustratesan example of dependency abstraction.
The I-CUBE and D-CUBE of this program test.p is shown
in Fig-1. The left table shows the concrete LINKs obtained
from source code, and the right table shows the abstract
LINKS computed through the proposed formalism. The rows
and columns of this table have been computed respectively
using thegrammar sets (1) and(2). This link table summarizes
the abstract relations between the entities of I-CUBE and
D-CUBE.

5.2 abstraction

Generally is the most implicit information set of a
procedural program. Similar to Ψ relations, the traditional
scheme is inadequate for abstract entities. Now the ADA
formalism for is presented.

Ψ(I , A)

Ψ(I , A)

Σt

Ψ(I1, A).Σt(I1, I2).Ψ(I2, A) Ψ(I , A) Ψ(I , A)

→
→
→

Ψ(I , A1)^Ψ(I , A2) Ψ(I , A)→
→

→→
→→
→→
→→
→→
→→

..(2)→
Ψ….(1)

Φt
Ψ(TL_2, D) = [Ψ(T , D)] | [Ψ(T , D) Ψ(BODY , D) Ψ(T , D)]

Φt

Φt



Fig-6 Links of test.p

Seed Enumerations Semantics

NF No information flows between A and B
FF Information flows from A to B
RF Information flows from B to A
BF Informations flows in both directions between A and B.

Table-3 Enumerations of 
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S1: read(x,y)
S2: if(x>y)
S3:    max:=x
S4: else max:=y
S5: sum:=x+y
S6: write(max)
S7: write(sum)

Φt(A , B , I)

5.2.1 The enumeration set
Unlike, the temporal auto-relation between instructions,

the temporal auto-relation between data items is contextual.
It is always computed in the context of an instruction entity,
either concrete or abstract.

Definition (information flow): If the value of data entity
A before the execution of instruction I (Abeg), affects the value
of data entity B after the execution (Bend), then we say that
there is a flow of information from A to B in the context of
instruction I.

The context can be varied from as narrow as a single base
model instruction to the entire program by selecting the root
entity of I-CUBE. Table-3 lists the possible seed events of

denoting the flow from the data item A to B in the
context of instruction I. An abstract relation may contain any
combination of the above seed events (because of the various
execution paths) compounded with operator ⊕ resulting in
31 possible enumerations. This enumeration set is also
complete.

5.2.2 Computation grammar
Given two data entities A and B, and a context instruction

I, the dependency can be computed from the
component sequences of and . Production set
(3) is used to compute it. Compound results in
corresponding compound values by product
expansion.

An enumeration computed by this grammar provides the
possible directions of information flow for which the nec-
essary condition exists in the overall dependency. Thus, it
only indicates possibility of the associated event, rather than

confirming the event. The grammar is isolevel. If required,
sufficient conditions can be derived through deep tracking
only in the hierarchy below the context instruction.

[X]A.[N]B NF
[N]A.[X]B NF
[R]A.[R]B NF
[R]A.[W]B FF
[R]A.[RW]B FF
[W]A.[R]B RF
[W]A.[W]B NF
[W]A.[RW]B RF
[RW]A.[R]B RF
[RW]A.[W]B FF
[RW]A.[RW]B FF

Belowthe abstract information flow analysis is illustrated
through an example. Fig-7(a) and Fig-7(b) shows the source
code, I-CUBE, D-CUBE and LINK tables of a program
noname.p. Fig-8 shows the data-flow profile between the
connected (those which have LINKs from context) data
objects in the context of entire program noname.c(Fig-8(a)),
abstract module TEST.ab (Fig-8(b)), and abstract module
BODY.ab (Fig-8(c)) as computed using the above grammar.
The forward flow F of Fig-8(a) indicates the net
information-flow effect from FILE-Y to FILE-X. On the
other hand, abstract flow B+N of Fig-8(b) indicates that there
exists two possible outcomes of TEST.ab, one of which
results in bi-directional transfer and other results in no
transfer of information between A and B. As evident, these

Ψ(I , A).Ψ(I , B) Φt(A , B , I)

→
→
→
→
→
→
→
→

Ψ(A , B , I) →
→
→

….(3)

Φt(A , B , I)
Ψ(I , A) Ψ(I , B)

Ψ(I , A)
Ψ(A , B , I)



profiles summarize (and also conform to) the fact that
noname.p is a program which reads data from FILE-Y, sorts
them and writes the sorted data to FILE-X. If all the data

are already in sorted order, then there will be no transfer of
information between internal variables A and B.

Fig-7(a) Navigation in noname.p

Fig-7(b) Links of noname.p
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5.3 Program dependency analysis
This section shows the abstract analysis of specifically

two fundamental program dependency forms; data flow
dependency and control flow dependency using ADA for-
malism. Podgruski and Clarke [14] have formally shown that
these two are fundamental pair of program dependencies.
Other abstraction systems require complete traversal of
concrete program models, when such dependencies are to be
analyzed.

5.3.1 Data flow dependency analysis
Informally, if the outcome of statement A is dependent

on the outcome of statement B (by a set of variable assign-
ments), than statement A is data flow dependent on statement
B. Below a formal definition is given in the context of PIAS
information organization.

Definition (Data Flow Dependency): Let
, be a thread and let .

Instruction u is directly data flow dependent on v iff there is
a walk vWu in G such that

. u is data flowdependent
on v iff there is a sequence of vertices, , such

that and , and is directly data flow dependent

on for i=1,2,...n-1. A data entity if
, and if .

This generalized definition reduces to the formal defi-
nition of data flow dependency provided by [14] when only
concrete entities are considered. As evident, analysis requires
only the information present in the thread, without any
deep tracking. Thus, it is isolevel. The analysis at higher
abstraction level requires traversal of shorter paths. As a
result, not only the computational efficiency of the analysis
increases at higher abstraction level, but also the perceptual
efficiency of the human subject in visualizing the dependency
increases.

5.3.2 Control flow dependency analysis
Informally, if the outcome of statement S1 decides the

executability (or the number of times it may be executed) of
statement S2, then statement S2 is control dependant on
statement S1.

Definition (Control Flow Dependency): Let
, be a thread and let .

Instruction v is control flow dependent on u iff, u and v are
not direct child or parent to each other, and there exists a
sequence of vertices, , such that ,

and either of three relations exists: ,

, or for i=1,2,...n-1.

The symbol indicates the child-parent relations in
spatial dimension. As stated earlier in section 5, during the
organization of I-CUBE from the base, the abstraction (or
grouping of statements) is performed only on the basis of
temporal auto-dependency. No control sequence is altered
during the SDH organization, rather all redundant depen-
dencies are removed, implicit concurrencies are detected and

the instructions are categorized. As a result, control
dependency analysis is more straightforward in I-CUBE. If
there is a control dependency between two entities, then there
must also be temporal auto-dependency between any of their
parents in the spatial hierarchy. Thus, control dependency
analysis requires computation only in and above the spatial
levels of the given entities. The number of entities at higher
level is smaller than the number of entities at the lower level.
Thus, the control dependency analysis is also equivalent to
isolevel computation.

6. Applications

Adiabatic Navigation: TheSDH organization allows the
software engineer to visually access the very micro detail of
any piece of information and to swiftly navigate to other,
however, without necessarily being forced to lose the broader
context of the macro structure of the software. Due, to SDH
hierarchical organization, it takes only logarithmic time (in
terms of the number of system components) to access any
piece of information. To maintain the macro-view, user can
flexibly select immaterial segments and compress details.
The expressiveness of the ADA formalism apparently con-
serves the net dependency information (or adiabaticity)
despite the compaction.

Flexible Visualization: A large set of program visuals
can be constructed on the basis of the SDH organization and
ADA formalism with improved clarity and efficiency to
facilitate design extraction. The projections of the seven
component SDH space, on any of its sub-spaces define
generic perspectives. Various specialized program perspec-
tives can be formed by further filtration of the generic
perspectives. The dimension of any such visual that is
deducible from the seven components of the program
information space can be further controlled through com-
paction. Note that such reduction of dimension is different
from zooming. In cases of overcrowded visual, control of
visual dimension through zooming provides little help in
contrast to the conceptual abstraction. Usual zooming means
gaining micro-view at the cost of macro-view.

Efficient Analytic Tools: Dependency analysis forms
the heart of numerous software tools used in applications
ranging from testing, impact analysis, debugging, mainte-
nance, code optimization, to parallelization and computer
security [3,10,14].With thecapability of abstract dependency
analysis, PIAS can perform various software engineering
tasks readily and almost effortlessly with increased compu-
tational as well as perceptual efficiency. For example, in dead
code elimination [3], any program segment that remains
disconnected from the principal hierarchy of I-CUBE rep-
resents the dead code. Similar advantages can be demon-
strated in a number of other applications such as subsystem
porting, complexity estimation, program layering,
smart-recompilation, operators-fault detection, complexity
matrix estimation, impact analysis, etc. [3,14,18].

G = {I , D , Σt, Φt, Ψ} u , v ∈ I(G)

(DEF(v) ∪ USE(u) − DEF(W)) ≠ ∅
v1, v2, …vn n ≥ 2

u = v1 v = vn vi

vi + 1 d ∈ DEF(u)
Ψ(u , d) = W | RW d ∈ USE(u) Ψ(u , d) = R | RW

Ψ

G = {I , D , Σt, Φt, Ψ} u , v ∈ I(G)

v1, v2, …vn n ≥ 2 u = v1 v = vn

Σt(vi, vi + 1) =
Σs(vi, vi + 1) = ↑ Σs(vi + 1, vi) = ↑

↑



7. Conclusion
This paper presents the adiabatic multi-perspective

(AMP) approach to program abstraction, which can help the
human expert in exploring the large and complex information
space of an unfamiliar software. To the knowledge of the
author, this paper introduces one of the first formalism to
perform efficient isolevel dependency analysis at abstract
level.

Because of this new capability, a wide variety of coherent
perspectives with general adiabatic compressibility can be
generated by sub-space projection, which includes all those
program views (those can be deduced solely from code
information) cited in previous abstraction systems. PIAS
provides a seamless uniform analytic platform for com-
prehension of software design both at macro level as well as
micro level. The upper (how big a system) and lower limits
(how detailed a system) in the abstraction scale is only
constrained by storage capacity and speed. As shown, the
isolevel property of the grammars ensures computational
efficiency of the entire abstraction process. As a future
direction, currently, I am investigating a new abstract
dependency language with more expressive power. Finally,
the author would like to thank members of SERL and
specially Dr. Miyamoto for generous intelletual guidance in
pursuing critical directions in this research.
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