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Abstract
This paper presents a technique for searching image

archive with visual examples. The technique described in
this work is specifically targeted for searching into
anatomical image archive where it is difficult to obtain
symbolic description of the objects of interest. This
technique is based on a new computing method called as
multidimensional holographic associative computing
(MHAC). MHAC introduces object based search in
associative computing. Unlike conventional associative
computing methods, this new method can perform search
on the basis of scene objects or features present in a
sample image. It also retains the usual advantages of
comventionalassiciativecomputing. It is computationally
efficient and the mode of computation is highly parallel
and distributed. This paper presents the design, query
mechanism and performance of an experimental medical
image archive (MEDIA) search system based on this
new attention modulated computing technique. MEDIA
search system can retrieve from cue objects as small as
15-10%of the frame sizeof the samplequery image, which
far exceeds the capability of previous associative
memories.

1. Introduction
PACS and Content Based Retrieval: One

of the fundamental objective of the rapidly
evolving PACS (Picture Archiving and Com-
municationsystems) research is to facilitate the
access and manipulation of medical images by
various medical applications. Many of these
required techniques are not supported by
current image database technology. One such
essential capability that is necessary for PACS
applications is the content-based retrieval of
images. Content-based retrieval (or pictorial
query-by-example) can be defined as the pro-
cess where images are identified from a part of

it. This part generally refers to an object or a
group of objects that is useful to users’ appli-
cations. These retrievals are based on the
similarity between the specified objects. For
instance, a doctor may want to find a similar
case to confirm a diagnosis at hand. He can
request PACS system for finding all the patient
cases that have tumor of a certain shape. As it
would be difficult to describe the shape and the
"content" of the tumor, the doctor can present
the image "example" which contains the tumor
and expect the system to find all the images
that contain such a tumor. As another
instance, a doctor can request the system to
find kidneys that are not of the normal shape
like the one in an image example.

Existing Techniques: The need to search
medical image archive by content has long been
recognized [KKKP90], particular for pathology,
medical research and education purposes.
Many pseudo-content-based retrieval tech-
niques have been developed. Techniques used
for database and document bases in traditional
Information Retrieval (IR) field [BeRS88,
Salt89] have been adopted for image retrieval
where the retrieval of images are mediated via
the retrieval of predefined attributes or textual
description (in natural language or keywords)
of images [CPLJ94]. Such techniques have
limitations. A picture is worth a thousand
words. Due to the vast expressiveness of pic-
tures, it is difficult to contain all the possible
descriptions of objects and their (anatomical,
spatial) inter-relationships inside an image by
a finite vocabulary of attributes or keywords
[KhYu94b]. Some images are very difficult to
comprehend or interpret. Moreover in such
approaches key words, index terms or attrib-

1 Published in the proceedings of the 4th International Conference on Image Management and Communications, IMAC’95,
Honolulu, HI, August 1995.



utes in user queries will have to be pre-defined.
Such approach necessitates extensive
domain-specific modeling to be effective. Onthe
contrary, content-based retrieval is based on
direct visual similarity, which eliminates the
problems of intermediate modeling.

Associative Memory for Content Based
Search: Various pattern matching algorithms
exists to find exact match in a pattern string
[Sedg91]. However, these procedural search
methods can not perform content based search
on images efficiently because of the charac-
teristically huge volume of image data2. The
artificial associative memory (AAM) models,
evolved from the recent advancement of neural
network research offer a promising alternative
which can overcome the inefficiency of these
procedural search methods [HiAn85, CaBu90].
These AAM computation models are also
inherently distributed and parallel. However,
current AAMs can not support object based
search. This is because they lack the ability to
concentrate their focus (during similarity
extraction) on any subset of the pixels in the
sample image. These models perform a pre-
weighted statistical pixel-to-pixel matching
withall the query pixels.There is nomechanism
to regulate the scope of search to the pixels
denoting a particular object in the example
frame. Dynamically shifting focus in specifi-
cally relevant in visual query inside image
archive. A single image supplied as a sample
during search can be interpreted in numerous
ways by the searcher based on the object
perception. Each interpretation may result in
different answersbased on the particular visual
object(s) in the query scene emphasized by the
searcher as a basis for similarity. For example,
it is up to the searcher to decide whether the
object of interest in a sample CT image
depicting an abdominal cross-section is the
entire spinal column or a tumor. Most of the
AAM models converge only to the statistically
closest match based on the entire sample
scene, without adjusting to the object region

intended by the searcher. Few AAM models,
such as ART [CGMR92] can provide multiple
answers. However, the answers are ordered
according to pure statistical closeness, but
have no relevance to the cognitive focus. In
addition, the requirement that cues to be
statistically significant3 in the query frame is
also unrealistic for querying into image archive.
The critical index features used in image search
as a cue are always based on their cognitive
importance irrespective of their statistical
dominance. Such a cue is quite often only a
fraction of the entire image.

Holographic Attentive Memory: Very
recently [Khan95,KhYu94] has proposed a new
associative computing mechanism called as
multidimensional holographic associative
computing (MHAC), which can overcome the
above critical limitation of the existing meth-
ods. This associative model with focus is based
on a new notion of information. Unlike any
artificial neural network, it considers each
element of information as a bi-modal pair,
which has (i) content and (ii) meta-weight
components. The resulting model can support
dynamically shifting view-points (or interpre-
tations) during query and still associatively
retrieve appropriate frames from archive in
constant time. Thus it creates the opportunity
of performing attention modulated retrieval in
associative computing, which is analogous to
the object based retrieval in symbolic search.
It also retains the highly parallel and distrib-
uted mode of conventional associative com-
puting.

We have developed an experimental image
archive for medical images called MEDIA based
on this new computing mechanism. To our
knowledge, this is one of the first image archive
based on distributed and associative mode of
computing. This paper presents the design and
performance of this archive system.

2 There is also no convenient technique to apply pre-precessing (such as sorting or FSM con-
struction [Sedg91]) and arrange images into an ordered set to gain search efficiency. This is
because the search space for images is multidimensional.

3 In Conventional AAMs the object cue is required to be at least 50% of the query frame for
correct retrieval [TaJo90]



In this paper, the following section first
presents a brief overview of the MHAC com-
puting paradigm. Section 3 then presents the
architecture of the prototype medical image
archive, which allows content based search on
the basis of various objects from in the sample
image. Section 4 finally presents few example
and performance result from an implemented
prototype archive.

2. Holographic Associative Memory
This section briefly presents the represen-

tation, computing model, and explaining the
focus ability of MHAC. Details can be found in
[KhYu94, Khan95].

2.1 Information Representation
A stimulus pattern is a suit of elements

. Unlike conventional AAM, which

express and processed each of these pieces as
a scalar valued real number, MHAC includes
the meta-knowledge about each of its pieces as
part of the basic notion of information. Thus,
each piece of information is modelled as a
bi-modal pair.

Where, ’s make a set of basic information
elements and represents the meta-knowledge
associated with this set. Multidimensional
complex numbers are used as operational
representation to map the bi-modal informa-
tion. Each is mapped onto a phase element

in the range of through a suitable

transformation, and becomes its magnitude.

Where, each is a

d-dimensional vector. Each of the is the

spherical projection (or phase component) of
the vector along the dimension . Thus, a

stimulus and a response are represented as:

Such complex valued representation is not
at all a new concept. Coherent light based
representation used in optical holography
[Gabo69] is one such example. Also, Suther-
land in his pioneering work used 2-D complex
numbers [Suth90] to construct one of the first
truly artificial holographic associative memory.
However, no previous attempt was made to
investigate the attention aspect of such
represetnation.

2.2 Encoding
In the encoding process, the association

between each individual stimulus and its cor-
responding response is defined in the form of
a correlation matrix by the inner product of the
conjugate transpose of the stimulus and the
response vectors. If the stimulus is a pattern
with n elements and the response is a pattern
with m elements, then is a matrix with
d-dimensional complex elements.

The associations derived from a set of stimuli
and a set of corresponding responses are
superimposed on a super matrix X of same
dimension referred as Holograph.

2.3 Retrieval
During recall, an excitory stimulus pattern
is obtained from the query pattern:

The decoding operation is performed by
computing the inner product of the excitory
stimulus and the correlation matrix X:

The basic associative memory characteris-
tics of this model explaining how (1), (2), and
(3) together can correctly retrieve original
stored response despite superimposition of the
associations in (2) is given in [KhYu94,
Khan95].
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2.4 Focus capability
Now, the unique characteristics of this

model, which allows the complete reconstruc-
tion of the response pattern from a dynamically
variable (during query) small (less than 10%)
segment of any stimulus is discussed.

By combining, the encoding and decoding
operations expressed in (1) and (2), the
retrieved association can be decomposed into
principal and cross-talk components.

Where, is considered the candidate match.
From (4) it can be deduced that if, the excitory
stimulus , bears similarity to any priory
encoded stimulus , in their -suit then the
principal component of generated response
resembles its corresponding response pattern

.

The cross talk component behaves as a
summation of randomly oriented vectors. Up to
an acceptable number of associations (P), this
remains well below unity, and thus, the net
response closely follows the principal-
component.

Let us consider the retrieval of the jth com-
ponent of the response (the retrieval of its other
components are also identical and
independent). We consider only the principal
component. For the sake of notational sim-
plicity we also assume d=2.

Equation (5) shows that each of the elements
in the query stimulus ( ) tries to cancel the

phase component of the corresponding
encoded stimulus element ( ) by forcing

. Thus, each tries to reconstruct the

associated on its own. The accuracy of each

reconstruction depends on the closeness of
these two elements. It is possible to visualize
that the resultant response is a weighted
average of the reconstructions done by all these
individual query stimulus elements, where the
weight terms are . This, mathematical con-

struction ofMHAC plays the key role in selective
focus. By appropriately choosing the values,

it is possible to dynamically set the importance
of each query stimulus component without
effecting the independent reconstruction
efforts by the others. By setting it is

possible to completely shut off the kth stimulus
element. If we have meta-knowledge that the
kth element is incorrect, then we can effectively
block it from contributing errors in the weighted
sum.

Almost all of the conventional artificial
neural networks use the classical scalar
product rule of synoptic efficacy, where the
reconstruction is performed as a linear
weighted sum. Where, weights are fixed during
learning. Therefore, each piece of stimulus
element becomes essential in the overall
reconstruction. In contrast, the proposed
vector product rule of synoptic efficacy is a
form of weighted average. Thus, each term is
not essential to the overall reconstruction. This
critical distinction allows MHAC to dynamically
adjust focus depending on the input condition.

The signal-to-noise ratio in the retrieved
response of this model is given by:

Where,
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îθn

e










1.e
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w intuitively refers to the ’porosity’ of the
window frame or the overall focus ( ) density
strength.

3. System Design
This section presents the content based

search mechanism image archive. Fig-1 pres-
ents the architecture of the system. The system
can be decomposed into three major
sub-systems, namely (a) image archive (IA), (b)
holographic encoding and (c) dynamic indexed
query.

The actual image archive is independent
from the query mechanism. Generally, images
are compressed (lossy or lossless) before stor-
age. The query mechanism does not interfere
with this storage sub-system. We will describe
the later two subsystems in details.

3.1 Encoding Process
Each of the stored image is first associated

with one unique response label pattern (RLP).

RLPs serves as an internal index for the archive
sub-system. RLPs are generated using reverse
Grey code to ensure maximum inter-distance
between them.

The encoding process of MEDIA system
involves (i) pre-processing and stimulus pat-
tern generation (ii) Assignment of response
label patterns (RLP), and (ii) training. These
steps are explained below.

3.2 Decoding subsystem

In this sub-system, the example image is
supplied by the human user. With dynamic
indexing tool-set, the searcher creates a view-
point mask (VM) in the example image. Given
the view-point mask (VM), and the example
image, the subsystem generates the query
stimulus. The decoder unit uses this stimulus
to search into its collection of holographic
abstracts and generates a response label (RLP).
The computation follows (3). The computation
time is of and thus independent of the
number of stored patterns.
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Fig-1 System Architecture
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This raw RLP is passed through a noise
suppressor unit (NSU) to a obtain a winner RLP
from the stored RLP set. The noise suppressor
measures the distance of the generated
response from the previously encoded RLPs.
Each RLP element is a complex number. The
storedRLPsare generally assigneda magnitude
of 1. On the other hand, the generated RLP
magnitude provides a measure of confidence of
the system on the accuracy of the generated
element. Noise suppressor performs an output
confidence weighted matching to converge to
the closest stored RLP. This RLP is then passed
to the archive sub-system to retrieve the actual
image.

4. Experiment Result
Below we show the performance of a proto-

type system implemented on a Silicon Graphics
Onyx platform. A set of 64 256x256 CT-Scan
and MRI frames was abstracted into the MEDIA
holograph. Fig-2 shows the performance of the
encoder during the training cycles. MEDIA
search system took only about 6-7 iterations to
attain more that 50 db average retrieval accu-
racy. This is significantly faster compared to
other AAM convergence speed. Fig-3 shows the
performance for each of the 64 patterns at the
end of 30th cycles. It shows the retrieval
accuracy for each of the stored images. Fig-4
shows some examples from the images encoded
and stored in MEDIA.



Fig-2 Encoding Accuracy
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Fig-3 Decoding Accuracy
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To illustrate the focus characteristics, it is
shown how MEDIA search system can perform
the retrieval when some objects on the query
template are indicated to the system as of
principal focus. Fig-5(a) shows the example of
a typical sample image used during query. Two
view-points are shown each of which can be a
possible index object [Ande83]. Table-1 shows

the view-point mask (VM) specifications of
these index objects. Each of these masks are
rectangular windows. Each rectangular focus
window is specified the xmax, xmin, ymax and
ymin. This table also shows the focus strengths
(rho) of these VMs. These are few of the possible
dynamic indices in this query image.

MASK# Object xmax xmin ymax ymin rho

4 Kidney 230 -135  165 -067 .145

6 Vertebrae 119 -045  145 -031 .131

Table-1 View-point Masks (VM) for Objects of Focus



MASK# Object rho Match# SNR

(db)

4 Kidney .145 4.4 (A26) 31.22

6 Vertebrae .131 6.1 (A25) 27.55

Table-2 Results of Query

The encoding process searches in the holo-
graph with the masked sample stimulus pat-
terns at various spatial locations of the
holograph. During decoding, The match
numbered 4.4, 6.1 of Fig-5(b) were respectively
pulled out by the system from the MEDIA as
closest ones. The accuracy of the retrieved RLPs
are listed in Table-2. As evident, although none
of these stored pictures have statistical simi-
larity with the query image, but each match
closely on the basis of respective cognitive
objects. Table-2 lists the corresponding per-
formances of some these queries. The 2nd
column in each table shows the density of the
focus window (w) of each of the used object
feature. As evident, the typical features or
objects, which are used by humans as indices
quite often fall below 10-15% of the total image.
The performances of most other conventional
AAMs sharply decrease when it falls below 50%
of the frame because of flat statistical matching
[TaJo90]. This example demonstrates the
unique ability of the MHAC to retrieve images
based on focus objects. It also clearly demon-
strates the potential of MHAC as a central
matching machine for a truly content based
associative image retrieval technique.

5. Conclusion
Here we have presented the result of the

experimentalassociative medical image archive
(MEDIA),with64 images. However, the capacity
of this network is very encouraging. Given
reasonable symmetry in the distribution of the
intensity values, virtually 1000/2000 images
can be encoded into a single holograph. It has
also been shown that virtually unlimited
number of images can be stored by higher order
encoding [Sedg91].

A separate but related problem is the
automatic detection of the focus field. Another
unique aspect of this memory is the lambda
reflex which provides an indication of the
quality of match. It is possible to design an
interactive semi-automatic focus detection
mechanism on the basis of this lambda reflex
in combination with various other edge detec-
tion and segmentation techniques. The same
reflex can also be used to perform translation,
scale and rotation varying search.

PACS, or intelligent management of image
information as a whole involves the under-
standing of the process of cognitive perception.
It is one of the most complex research problem
lying at the fringe of current research in com-
puting technology. Perhaps no single retrieval
technique is sufficient to cope with the diversity
and sophistication required by the PACS
related applications. This technique of direct
content based search can be augmented with
other conventional index image retrieval tech-
niques in a PACS. The combination of com-
putational efficiency with object based focus
ability makes MEDIA search system a serious
contender as a technique for fast content based
search. Also, the inherent parallel and dis-
tributed nature of assciative computing makes
its potentially scalable.
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