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Abstract 
This paper investigates how to rank the candidate 

pages for potential pre-fetch to accelerate responsiveness 
of the web access. Given the estimates of the hyperlink 
transition probabiliti es, it seems that instead of 
prefetching in order of maximum likely hood path, a 
ranking order that also considers the loading time yields 
much better performance both in terms of reduction in 
overall response lag and the wasted prefetch.  

Keywords: prefetch, streaming, cache. 

1 Introduction 
Caching and prefetching are the two principal 

techniques for improving responsiveness for systems that 
involve data communication. Basic caching helps the case 
of repetiti ve references, prefetching reduces response lag 
for newer resources. Both have been extensively used in 
hardware systems to offset memory access latency. In 
Internet systems, caches have been integrated within the 
infrastructure [1,2], and recent focus has been shifted to 
prefetching. 

Modern prefetch enabled caching for hardware 
systems have shown more than 90% hit rate.  However, 
the Web is yet to match the success [3,4,5]. Web 
prefetching faces some additional complexities. Decision 
points mostly bifurcate the control flow tree in hardware 
due to the if-then programming construct that drives 
branching. In contrast, the degree of branching in the web 
is higher since there is no limit on the number of links in a 
page. In hardware, quite often all the parallel branches are 
prefetched. In some cases conditions can be pre-evaluated 
to compute the prefetch path. Neither seems to be very 
practical for web systems.  

The secondary/tertiary memory access times are 
mostly uniform for hardware pages. However, it widely 
varies between web pages due to wide differences in their 
sizes, link speeds and proxies in access path. There is also 
concern that excessive web prefetch can have adverse 
effect since the network here is highly shared [6,7,8].  
Clearly, optimization at the branch point seems to be very 

crucial for the case of Web. In this research we focus on 
the issue-- on the selection and ordering of transition 
paths in the case of high branching factor and varying 
access time. 

1.1 Related Works 
The research in prefetching has gained momentum 

more recently [5,9,10]. Kroeger et. al. demonstrated that 
with ample knowledge of future reference a combined 
caching and prefetching can reduce access latency as 
much as 60% [3,11]. Jacobson and Cao [10] proposed a 
prefetching method based on partial context matching for 
low bandwidth clients and proxies. Palpanas and 
Mendelzon [4] demonstrated that a k-order Markovian 
prediction engine can improve response time by a factor 
of up to 2. Both these methods studied context matching  
(past sequence of accessed references) for prediction of 
future web references. Pitkow and Pirolli [12] 
investigated various methods that have evolved to predict 
surfer's path from log traces such as session time, 
frequency of cli cks, Levenshtein Distance analyses and 
compared the accuracy of various construction methods. 
This Markov model based study noted that although 
information is gained by studying longer paths, but 
conditional probabilit y estimate, given the surf path, is 
more stable over time for shorter paths and can be 
estimated reliably with less data.  

Also of interest is the work by Cohen and Kaplan [8] 
who cited bandwidth waste in prefetch, and as opposed to 
document prefetch, suggested pre-staging only the 
communication session- such as pre-resolving DNS, pre-
establi shing of TCP connection and pre-warming by 
sending dummy HTTP HEAD request. RealPlayer 
(release 7 onward, 1999) already pre-stages streaming 
connections linked from a page by pre-extracting and 
readying individual codec associated with each.  

While considerable empirical studies have been 
performed to study the methods for predicting path 
transition probabiliti es. Many of the previous studies, 
except for Cohen and Kaplan [8], seems to have two 
assumptions in ordering and prefetch stage—where the 
results of the predictions are actuall y used. First is the full 
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document prefetch. Second is prefetching documents in 
order of maximum likely hood path.  

This research, presents a prefetch mechanism that 
differs on these two assumptions.  Earlier, in [7] we 
proposed that instead of full documents (or none), a 
middle approach is possible. A partial prefetch scheme 
has been presented in [7] where only an optimum 
estimated lead segment is prefetched. It can significantly 
reduce the wasted prefetch without compromising the 
responsiveness gained in the first place. 

In this paper we present the analysis on the other 
distinguishing aspect-- path ordering. Instead of 
prefetching in order of maximum probable transition 
paths, we propose a new ranking order-- which optimizes 
the expected response time with respect to all probable 
transition paths.  

In the following sections, we first present the model 
and the analytical considerations supporting the prefetch 
scheme. Section 3 then outlines key systems issues. 
Finall y, section 4 presents the performance of the scheme 
under various workload supported by rigorous statistical 
simulation. The deployment of any prefetch system, 
including ours, will require a much more detailed design 
work at the protocol level. However, discussions about 
these issues cannot be accommodated in this paper. 

2  Analysis 

2.1 Hyperspace Model 
The reader moves through a sequence of nodes in 

the hyperspace. Lets call this the anchor sequence. When 
a client (reader) program is active, the idea is to track the 
anchor nodes, monitor its neighboring regions, and 
prefetch selected parts from a subset of these nodes in 
client's prefetch cache with high li kely-hood of traversal 
based on some optimization objective. Generall y, 
information about only a subpart of the hyper-space is 
visible to any practical cache system. For tractabilit y, a 
further pruned graph should be used for pre-fetch 
decision. We call this graph the roaming- sphere and will 
denote it by G(VG,EG). A subset of its’ nodes is eventually 
preloaded in the prefetch cache. We also assume that 
nodes in G(VG,EG) has some node 'statistics' (such as size 
or load time). Also, each link in it has a transition 
probability p(i,j) associated with it.  

2.2 Streamed Transport Model 
According to the partial prefetch scheme the 

transport model also divides the transport into two 
probable phases. Each node thus has two transport parts-- 
the lead segment and the stream segment. The available 
bandwidth is correspondingly separated into two sub-
channels; feed channel for loading the streaming segment 
of the current anchor, the lead channel to proactively load 
the lead segments of resources. Fig-4 shows the event 
sequence for the transport model. We assume that Dtotal is 
the size of an elementary resource, Dlead is the bytes in 

lead segment and Dfeed is the bytes to be streamed. We use 
β to denote the ratio of total bandwidth to that allocated to 
the lead sub-channel.  

2.3 Prefetch Node Ranking 
We now address the question-- what is the best 

prefetching sequence of the nodes that will mi nimize the 
expected cumulative read-time lag for a given network 
bandwidth? 

First we define the optimization criterion. In a 
hyper-graph G, Lets U=(a1,a2,a3….al), where ui∈G, is the 
anchor sequence-- the sequence of nodes followed by a 
user. Let’s Γ is the prefetch sequence in which the nodes 
are loaded in the cache (Clearly, U ⊆ Γ⊆ { nodes in G} ). 
Let pi is the estimated probabilit y that a user traverses a 
node ni in roaming sphere G, and TL,i is the time the node 
ai is fetched and TP,i is the time spent by the user in that 
node.  

Thus, we define an overall penalty function-- the 
expected cumulative read-time lag: 

{ }∑ −− +−=Γ
U

i
iPiLiLi TTTpUT 0)],([max)|( 1,1,,

            ..(1) 

The objective is to find the prefetch sequence Γ that 
will mi nimize the expected penalty E{ T(Γ|U)} .  

It is important to note that this function optimizes 
with respect to all probable transitions of U, weighted by 
their transition probabilit y.  

Given the above optimization criterion, it can be 
shown that: 

Theorem-1 (Branch Decision): Let A=nc is the 
current anchor point with direct transition paths to a set 
of candidate nodes n1, n2, n3,-- nn, such that Ti is the 
estimated loading times of node ni, and Pr[an+1=ni |an=A]  
is the conditional link transition probability, then the 
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Fig-1 Transport event model used in the analysis. 
The top diagram shows event sequence and various 
time quantities and the bottom diagram shows the 
buffer occupancy under constant rate operation.  
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average delay is minimum if the links are prefetched in-
order of the highest priority Qi, where: 

i

nin
i T

Aana
Q

]|Pr[
loglog 1 ==

= +  
...(2) 

For brevity, only the result is stated here. The proof 
can be found in the web retrievable reference [14].  

This theorem states that at a simple branch point 
(roaming sphere of depth=1) embedded URLs should be 
prefetched in order of the conditional transition 
probability but in inverse order of their estimated load 
time.   

It can be seen from (2) that in hardware prefetch, for 
each memory hierarchy the access time for all pages 
(from the stage immediate below) is uniform. Thus, a 
transition probability based hierarchy will still be 
optimum. However, the assumption of uniformity is not 
valid for the case of web access.  

Unfortunately, the relative priority cannot be 
determined for a general graph for the optimization 
criterion defined by equation (2). In advanced work, 
under a slightly modified definition which ignores the 
credit due to cumulative read times along the paths (Tp,i-

1=0 for all i in equation-2) it can be proven.  See [14] for 
detail. However, equation (2) is sufficient for ranking 
immediately traversable hyperlinks. Seldom excessive 
prefetch bandwidth is available for deeper prefetch. 

2.4 Lead Mass  
The next question we address is how much of each 

node should be prefetched? This will also determine the 
pre-load time to be used in (2). Let us assume that the 
margin time=0. We use the constraint that the reading or 
rendering time should be at least equal to the streaming 
time for all components.  

The idea is that instead of allocating full bandwidth 
to prefetch, we only allocate a part for prefetching and 
remaining is used for real time fetching of the remaining 
part of the current anchor.  Given the bandwidth partition, 
and the estimated reading/rendering time of the document, 
it is possible to obtain how much data can be fetched in 
real time. We should prefetch the difference. 
Consequently, for a given consumption rate R i render for 
the media type=i the amount of data that has to be 
prefetched is: 
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.(3) 

If the pre-fetch mechanism is a proxy cache, instead 
of an end-client, the consumption rate will simply be the 
bandwidth between the requesting client and the proxy. 
Only the Dlead amount of data should be pre-loaded for 
minimum delay. It provides a lower bound and we call it 
critical lead mass. Note that, the other part left behind for 

fetching later, should not result in any increase in the 
perceivable delay to the client agent, because at any time 
client will have ample data to play. Corresponding pre-
load time for the media is given by: 

preload

i

lead
i

lead B

D
T

∑
=  

...(4) 

3 Techniques 
The prefetch mechanism can be implemented either 

as a client system or as a client proxy. Some system wide 
non-trivial mechanisms will be needed for procuring and 
propagating the link and document access statistics. In 
addition the prefetch mechanism will need techniques for 
partial document transfer and bandwidth partitioning.  

3.1 Document Statistics and Partial Get 
HTTP 1.1 Request-Header Referrer field can be 

used for generating access statistics  [13]. A server plug-
in then can tracks the intra-server link references from the 
referrer values. The list of embedded link, profile 
parameters and access statistics for hot documents can be 
stored in a hot-prefetch database by the origin server. 
Prefetch system can receive the statistics by a new 
GET_statistics request method implemented using HTTP 
reserve pool. The hot-prefetch database server should 
respond with the statistics for an URL. 

The mechanism to obtain only a selected set of bytes 
can be implemented using the conditional Range GET 
mechanism of HTTP 1.1 (If-Range header, Range and 
Content-range, Response Code 206 Partial Content).  

3.2 Bandwidth Partition 
Bandwidth partitioning is not available in the current 

QoS-less Internet. Instead a technique called episodic 
byte proportioning can be used effectively creating the 
same result. Here the Range GET requests are queued on 
the basis of small time episodes. The waiting Range GET 
requests are then proportionately interleaved in a queue 
within the episodes. The scheme works because the exact 
delivery times of the prefetch segments do not matter. 
Since, these are not immediate rendered. However the 
requests for real time feed segments should be at the top 
of the episode queues-- effectively giving them a little 
prefetch. 

3.3 Method Prefetch 
On the proxy side, when a new user-agent is 

detected, a new prefetch session is initialized for tracking 
its roaming sphere. The prefetch algorithm then finds 
G(VG,EG) by recursive GET-statistics traversal using a 
cut-off threshold ε.  

The prefetch mechanism then first computes the 
critical lead mass for probed hot nodes. It then determines 
the priority of the nodes according to the equation-2. The 
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Range GET requests are then formulated for appropriate 
lead byte segments based on small episodes. 

The loading order remains valid until the current 
anchor node is read. Upon completion, a new node is 
traversed, and the episode queues are reorganized. The 
subsequent evaluation is incremental. A new anchor point 
changes only the conditional probabiliti es. Consequently, 
in this new graph, the conditional transition probabiliti es 
(and thus the priority) of the nodes downstream are 
upgraded by factor 1/p(i,j), while nodes branching out 
from upstream are downgraded by factor p(j,i). 

The optimum ranking analysis presented here does 
not make any assumption about how to estimate the link 
transition probabiliti es. Any of the proposed methods 
[10,4,12] can potentiall y be used. For our simulation our 
design choice was the simplest one - the access frequency 
analysis based transition probabilit y estimation.  

4  Performance Results 
It seems that the composition of web is changing 

significantly over time. For this particular work we found 
it more appropriate to generate broad range of hyperspace 
data with distinct and varying statistical properties and 
observe how the proposed method will perform in each of 
these conditions, rather than conducting a trace driven 
analysis (which is generall y a single snapshot and offer 
littl e controllabilit y of parameters). 

In this experiment we generated a random set of 
nodes each with a parent HTML containing links to others 
and a set of embedded media and hyperlinks. We limited 
the maximum hyperlinks per page to be 21 (The 
underlying algorithm further pruned links with below ε 
low transition frequency and effectively considered much 
less links for prefetch). We generated the document sizes 
and the link transition probabilities for all li nks using 
normal distribution (PrSDIST(x) and PrPDIST(x), where x is 
the hyperlink index). Fig-1 plots a typical distribution 
pair. Here the link transition probabilit y and the size 
distributions respectively have modes (index of maximum 
li kelihood class) at paths 7 and 13. We have tested the 
system extensively for various distribution mean and 
standard deviations.  Since, eq. (2) is a ratio of the two 
quantities, we ran the experiment for various mode 
separations.  

We evaluated their Log Q based priorities using 
equation (2). For comparison we also computed the 

simple path transition probability (PTP) based 
priorities for all these cases. Fig-3 plots all the results. 
The  Log Q and PTP priority values have different scales. 
Thus left y-axis and the first six curves show the path 
priorities assigned by Log Q method for six values of 
distribution mode separations (d). In these six cases we 
kept the mode of the size distribution PrSDIST(x) to 3, and 
varied the mode of the PrPDIST(x) respectively to L1=13, 
L2=11,L3=9, L4=7, L5=5, L6=3). The right y-axis and 
the upper six curves show the path priorities assigned by 
the PTP order for the same six cases. As can be seen from 
the plot these two methods followed quite different 
prefetch sequence Γ. 

Now to evaluate the performance, we let the 
simulator fetch the pages in order of their priorities. The 
system determines the critical lead mass Dlead according 
to equation (3) and fetches this segments while the 
rendering progresses for current document. (At the same 
time it also fetches the feed segment of the current 
document). To estimate the expected delay we computed 
the estimated speedup experienced by all 21 probable 
anchor sequences for the same prefetch sequence U given 
by equation (2). Fig-4 plots the observed speedup in the 
responsiveness. It shows three quantities-- the maximum, 
minimum and the expected average. The later is obtained 
by weighing each class’s speedup by the number of 

Fig-2 
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surfer’s who follow the path. We assume this to be 
proportional to the estimated transition frequencies. The 
left L1-L6 set here plots the high-low-mean values of the 
observed performance for proposed log Q priority. For 
comparison the right L1-L6 set plots the observed 
performance for PTP priority.  

The PTP priority demonstrates maximum speed-up 
in the range of about 1.2 to 1.5 (this is not far from what 
have been reported by other studies). It’s mean seems to 
be less than 1.4. In contrast Log Q priority consistently 
demonstrated superior performance where mean ranged 
from 1.5-1.75. Also its maximum and minimum seems to 
be consistently much higher. Also, an interesting 
observation can be made— best-case improvement is 
more dramatic as the mode separation (d) becomes 
smaller (L5, and L6).    

This gain in performance is not unexpected. The 
analytical model explains the optimum improvement of 
the expected average responsiveness over all the surfer’s 
path classes.  The major improvement in the best-case is 
due to the fact that the log Q ordering favors shorter jobs 
to be cleared first. It enables surfers’ of the smaller 
documents to experience major improvement in system’s 
responsiveness (from 1.6 to almost 2.2 and above).   

5 Conclusions & Current Work 
Prefetching seems to be an attractive method for 

improving responsiveness of web systems.  However, 
prefetching need to be performed very selectively. Not 
only the branching factors are high, but also, (unli ke the 
case of hardware) web is a highly shared resource. In this 
research a technique has been proposed for optimally 
ordering hyperlinks. The result suggests that significant 
performance improvement is possible by incorporating 
loading time in to the link priority evaluation. 

As indicated, this work is not about the estimation 
methods of link transition probabilit y. Whether it is 
computed from conventional access log [4,10,12], or from 
explicit message exchange [9], the issue addressed here is 
how to use them.  

Within the scope of this paper, only non-trivial 
steps- such as bandwidth partitioning on QoS less Internet 
have been outlined (section-3). However, the deployment 
of any prefetch system, including the one proposed here 
will require significant research on protocols. Few 
insightful references on these areas are in [15-18]. 

Within the scope of this paper, we deliberately 
switched off any caching. However, the impact of caching 
parameters (such as replacement poli cy, cache size, etc.) 
on an integrated scheme is an important area deserving 
further study. 

The work is currently being funded by DARPA 
Research Grant F30602-99-1-0515 under its Active 
Network initiative. 
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