
��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� �� ������"!���#%$'&�(��) *+��#
) !�,.-�/0� �
*+/'!���#21"3�3�() 4�!���) 5
��/�6���$7,.198�:�:�:
;=<.>�?
@�A�?�BDC�E F G�H�I=G�J�J�J%K�L�MON�P�Q�L�M�I R=S.T�U=V�VW�X�Y Z [�\
]
^

 1

DYNAMIC PARTIAL PREFETCH RANKING IN HYPERMEDIA
NEIGHBORHOOD

JAVED I. KHAN

Media Communications and Networking Research Laboratory

Department of Math & Computer Science, Kent State University
233 MSB, Kent, OH 44242

javed@kent.edu

Abstract
This paper investigates how to rank the candidate

pages for potential pre-fetch to accelerate responsiveness
of the web access. Given the estimates of the hyperlink
transition probabiliti es, it seems that instead of
prefetching in order of maximum likely hood path, a
ranking order that also considers the loading time yields
much better performance both in terms of reduction in
overall response lag and the wasted prefetch.

Keywords: prefetch, streaming, cache.

1 Introduction
Caching and prefetching are the two principal

techniques for improving responsiveness for systems that
involve data communication. Basic caching helps the case
of repetiti ve references, prefetching reduces response lag
for newer resources. Both have been extensively used in
hardware systems to offset memory access latency. In
Internet systems, caches have been integrated within the
infrastructure [1,2], and recent focus has been shifted to
prefetching.

Modern prefetch enabled caching for hardware
systems have shown more than 90% hit rate. However,
the Web is yet to match the success [3,4,5]. Web
prefetching faces some additional complexities. Decision
points mostly bifurcate the control flow tree in hardware
due to the if-then programming construct that drives
branching. In contrast, the degree of branching in the web
is higher since there is no limit on the number of links in a
page. In hardware, quite often all the parallel branches are
prefetched. In some cases conditions can be pre-evaluated
to compute the prefetch path. Neither seems to be very
practical for web systems.

The secondary/tertiary memory access times are
mostly uniform for hardware pages. However, it widely
varies between web pages due to wide differences in their
sizes, link speeds and proxies in access path. There is also
concern that excessive web prefetch can have adverse
effect since the network here is highly shared [6,7,8].
Clearly, optimization at the branch point seems to be very

crucial for the case of Web. In this research we focus on
the issue-- on the selection and ordering of transition
paths in the case of high branching factor and varying
access time.

1.1 Related Works
The research in prefetching has gained momentum

more recently [5,9,10]. Kroeger et. al. demonstrated that
with ample knowledge of future reference a combined
caching and prefetching can reduce access latency as
much as 60% [3,11]. Jacobson and Cao [10] proposed a
prefetching method based on partial context matching for
low bandwidth clients and proxies. Palpanas and
Mendelzon [4] demonstrated that a k-order Markovian
prediction engine can improve response time by a factor
of up to 2. Both these methods studied context matching
(past sequence of accessed references) for prediction of
future web references. Pitkow and Pirolli [12]
investigated various methods that have evolved to predict
surfer's path from log traces such as session time,
frequency of cli cks, Levenshtein Distance analyses and
compared the accuracy of various construction methods.
This Markov model based study noted that although
information is gained by studying longer paths, but
conditional probabilit y estimate, given the surf path, is
more stable over time for shorter paths and can be
estimated reliably with less data.

Also of interest is the work by Cohen and Kaplan [8]
who cited bandwidth waste in prefetch, and as opposed to
document prefetch, suggested pre-staging only the
communication session- such as pre-resolving DNS, pre-
establi shing of TCP connection and pre-warming by
sending dummy HTTP HEAD request. RealPlayer
(release 7 onward, 1999) already pre-stages streaming
connections linked from a page by pre-extracting and
readying individual codec associated with each.

While considerable empirical studies have been
performed to study the methods for predicting path
transition probabiliti es. Many of the previous studies,
except for Cohen and Kaplan [8], seems to have two
assumptions in ordering and prefetch stage—where the
results of the predictions are actuall y used. First is the full

��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� ����������������� ��� ��	 !"���
	 ��#%$�&'� �
!"& �����)(�*�*�� 	 ������	 �
��&�+����,#%(.-�/�/�/
01�%2��
!�3����4-�/ 5 -�6�+1-�/�/�/�7���&98�������&�+ :1#%(�+1*�*-�;�/ 5 -�;
<
=

 2

document prefetch. Second is prefetching documents in
order of maximum likely hood path.

This research, presents a prefetch mechanism that
differs on these two assumptions. Earlier, in [7] we
proposed that instead of full documents (or none), a
middle approach is possible. A partial prefetch scheme
has been presented in [7] where only an optimum
estimated lead segment is prefetched. It can significantly
reduce the wasted prefetch without compromising the
responsiveness gained in the first place.

In this paper we present the analysis on the other
distinguishing aspect-- path ordering. Instead of
prefetching in order of maximum probable transition
paths, we propose a new ranking order-- which optimizes
the expected response time with respect to all probable
transition paths.

In the following sections, we first present the model
and the analytical considerations supporting the prefetch
scheme. Section 3 then outlines key systems issues.
Finall y, section 4 presents the performance of the scheme
under various workload supported by rigorous statistical
simulation. The deployment of any prefetch system,
including ours, will require a much more detailed design
work at the protocol level. However, discussions about
these issues cannot be accommodated in this paper.

2 Analysis

2.1 Hyperspace Model
The reader moves through a sequence of nodes in

the hyperspace. Lets call this the anchor sequence. When
a client (reader) program is active, the idea is to track the
anchor nodes, monitor its neighboring regions, and
prefetch selected parts from a subset of these nodes in
client's prefetch cache with high li kely-hood of traversal
based on some optimization objective. Generall y,
information about only a subpart of the hyper-space is
visible to any practical cache system. For tractabilit y, a
further pruned graph should be used for pre-fetch
decision. We call this graph the roaming- sphere and will
denote it by G(VG,EG). A subset of its’ nodes is eventually
preloaded in the prefetch cache. We also assume that
nodes in G(VG,EG) has some node 'statistics' (such as size
or load time). Also, each link in it has a transition
probability p(i,j) associated with it.

2.2 Streamed Transport Model
According to the partial prefetch scheme the

transport model also divides the transport into two
probable phases. Each node thus has two transport parts--
the lead segment and the stream segment. The available
bandwidth is correspondingly separated into two sub-
channels; feed channel for loading the streaming segment
of the current anchor, the lead channel to proactively load
the lead segments of resources. Fig-4 shows the event
sequence for the transport model. We assume that Dtotal is
the size of an elementary resource, Dlead is the bytes in

lead segment and Dfeed is the bytes to be streamed. We use
β to denote the ratio of total bandwidth to that allocated to
the lead sub-channel.

2.3 Prefetch Node Ranking
We now address the question-- what is the best

prefetching sequence of the nodes that will mi nimize the
expected cumulative read-time lag for a given network
bandwidth?

First we define the optimization criterion. In a
hyper-graph G, Lets U=(a1,a2,a3….al), where ui∈G, is the
anchor sequence-- the sequence of nodes followed by a
user. Let’s Γ is the prefetch sequence in which the nodes
are loaded in the cache (Clearly, U ⊆ Γ⊆ { nodes in G}).
Let pi is the estimated probabilit y that a user traverses a
node ni in roaming sphere G, and TL,i is the time the node
ai is fetched and TP,i is the time spent by the user in that
node.

Thus, we define an overall penalty function-- the
expected cumulative read-time lag:

{ }∑ −− +−=Γ
U

i
iPiLiLi TTTpUT 0)],([max)|(1,1,,

 ..(1)

The objective is to find the prefetch sequence Γ that
will mi nimize the expected penalty E{ T(Γ|U)} .

It is important to note that this function optimizes
with respect to all probable transitions of U, weighted by
their transition probabilit y.

Given the above optimization criterion, it can be
shown that:

Theorem-1 (Branch Decision): Let A=nc is the
current anchor point with direct transition paths to a set
of candidate nodes n1, n2, n3,-- nn, such that Ti is the
estimated loading times of node ni, and Pr[an+1=ni |an=A]
is the conditional link transition probability, then the

PRELOAD
BEGIN

TMrgin

Fig-1 Transport event model used in the analysis.
The top diagram shows event sequence and various
time quantities and the bottom diagram shows the
buffer occupancy under constant rate operation.

STREAMING
BEGIN STREAMING

END

DISPLAY
BEGIN

DISPLAY
END

Trender

Tlead Tfeed

BUFFER CONTENT

PRELOAD
END

CACHE WAIT

��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� ����������������� ��� ��	 !"���
	 ��#%$�&'� �
!"& �����)(�*�*�� 	 ������	 �
��&�+����,#%(.-�/�/�/
01�%2��
!�3����4-�/ 5 -�6�+1-�/�/�/�7���&98�������&�+ :1#%(�+1*�*-�;�/ 5 -�;
<
=

 3

average delay is minimum if the links are prefetched in-
order of the highest priority Qi, where:

i

nin
i T

Aana
Q

]|Pr[
loglog 1 ==

= +
...(2)

For brevity, only the result is stated here. The proof
can be found in the web retrievable reference [14].

This theorem states that at a simple branch point
(roaming sphere of depth=1) embedded URLs should be
prefetched in order of the conditional transition
probability but in inverse order of their estimated load
time.

It can be seen from (2) that in hardware prefetch, for
each memory hierarchy the access time for all pages
(from the stage immediate below) is uniform. Thus, a
transition probability based hierarchy will still be
optimum. However, the assumption of uniformity is not
valid for the case of web access.

Unfortunately, the relative priority cannot be
determined for a general graph for the optimization
criterion defined by equation (2). In advanced work,
under a slightly modified definition which ignores the
credit due to cumulative read times along the paths (Tp,i-

1=0 for all i in equation-2) it can be proven. See [14] for
detail. However, equation (2) is sufficient for ranking
immediately traversable hyperlinks. Seldom excessive
prefetch bandwidth is available for deeper prefetch.

2.4 Lead Mass
The next question we address is how much of each

node should be prefetched? This will also determine the
pre-load time to be used in (2). Let us assume that the
margin time=0. We use the constraint that the reading or
rendering time should be at least equal to the streaming
time for all components.

The idea is that instead of allocating full bandwidth
to prefetch, we only allocate a part for prefetching and
remaining is used for real time fetching of the remaining
part of the current anchor. Given the bandwidth partition,
and the estimated reading/rendering time of the document,
it is possible to obtain how much data can be fetched in
real time. We should prefetch the difference.
Consequently, for a given consumption rate R i render for
the media type=i the amount of data that has to be
prefetched is:

 ⋅−=

−≥

render
i

channel
i

total
i

render
i

feed
i

total
i

lead
i

R

B
D

R

B
DD

β
11

.(3)

If the pre-fetch mechanism is a proxy cache, instead
of an end-client, the consumption rate will simply be the
bandwidth between the requesting client and the proxy.
Only the Dlead amount of data should be pre-loaded for
minimum delay. It provides a lower bound and we call it
critical lead mass. Note that, the other part left behind for

fetching later, should not result in any increase in the
perceivable delay to the client agent, because at any time
client will have ample data to play. Corresponding pre-
load time for the media is given by:

preload

i

lead
i

lead B

D
T

∑
=

...(4)

3 Techniques
The prefetch mechanism can be implemented either

as a client system or as a client proxy. Some system wide
non-trivial mechanisms will be needed for procuring and
propagating the link and document access statistics. In
addition the prefetch mechanism will need techniques for
partial document transfer and bandwidth partitioning.

3.1 Document Statistics and Partial Get
HTTP 1.1 Request-Header Referrer field can be

used for generating access statistics [13]. A server plug-
in then can tracks the intra-server link references from the
referrer values. The list of embedded link, profile
parameters and access statistics for hot documents can be
stored in a hot-prefetch database by the origin server.
Prefetch system can receive the statistics by a new
GET_statistics request method implemented using HTTP
reserve pool. The hot-prefetch database server should
respond with the statistics for an URL.

The mechanism to obtain only a selected set of bytes
can be implemented using the conditional Range GET
mechanism of HTTP 1.1 (If-Range header, Range and
Content-range, Response Code 206 Partial Content).

3.2 Bandwidth Partition
Bandwidth partitioning is not available in the current

QoS-less Internet. Instead a technique called episodic
byte proportioning can be used effectively creating the
same result. Here the Range GET requests are queued on
the basis of small time episodes. The waiting Range GET
requests are then proportionately interleaved in a queue
within the episodes. The scheme works because the exact
delivery times of the prefetch segments do not matter.
Since, these are not immediate rendered. However the
requests for real time feed segments should be at the top
of the episode queues-- effectively giving them a little
prefetch.

3.3 Method Prefetch
On the proxy side, when a new user-agent is

detected, a new prefetch session is initialized for tracking
its roaming sphere. The prefetch algorithm then finds
G(VG,EG) by recursive GET-statistics traversal using a
cut-off threshold ε.

The prefetch mechanism then first computes the
critical lead mass for probed hot nodes. It then determines
the priority of the nodes according to the equation-2. The

��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� ����������������� ��� ��	 !"���
	 ��#%$�&'� �
!"& �����)(�*�*�� 	 ������	 �
��&�+����,#%(.-�/�/�/
01�%2��
!�3����4-�/ 5 -�6�+1-�/�/�/�7���&98�������&�+ :1#%(�+1*�*-�;�/ 5 -�;
<
=

 4

Range GET requests are then formulated for appropriate
lead byte segments based on small episodes.

The loading order remains valid until the current
anchor node is read. Upon completion, a new node is
traversed, and the episode queues are reorganized. The
subsequent evaluation is incremental. A new anchor point
changes only the conditional probabiliti es. Consequently,
in this new graph, the conditional transition probabiliti es
(and thus the priority) of the nodes downstream are
upgraded by factor 1/p(i,j), while nodes branching out
from upstream are downgraded by factor p(j,i).

The optimum ranking analysis presented here does
not make any assumption about how to estimate the link
transition probabiliti es. Any of the proposed methods
[10,4,12] can potentiall y be used. For our simulation our
design choice was the simplest one - the access frequency
analysis based transition probabilit y estimation.

4 Performance Results
It seems that the composition of web is changing

significantly over time. For this particular work we found
it more appropriate to generate broad range of hyperspace
data with distinct and varying statistical properties and
observe how the proposed method will perform in each of
these conditions, rather than conducting a trace driven
analysis (which is generall y a single snapshot and offer
littl e controllabilit y of parameters).

In this experiment we generated a random set of
nodes each with a parent HTML containing links to others
and a set of embedded media and hyperlinks. We limited
the maximum hyperlinks per page to be 21 (The
underlying algorithm further pruned links with below ε
low transition frequency and effectively considered much
less links for prefetch). We generated the document sizes
and the link transition probabilities for all li nks using
normal distribution (PrSDIST(x) and PrPDIST(x), where x is
the hyperlink index). Fig-1 plots a typical distribution
pair. Here the link transition probabilit y and the size
distributions respectively have modes (index of maximum
li kelihood class) at paths 7 and 13. We have tested the
system extensively for various distribution mean and
standard deviations. Since, eq. (2) is a ratio of the two
quantities, we ran the experiment for various mode
separations.

We evaluated their Log Q based priorities using
equation (2). For comparison we also computed the

simple path transition probability (PTP) based
priorities for all these cases. Fig-3 plots all the results.
The Log Q and PTP priority values have different scales.
Thus left y-axis and the first six curves show the path
priorities assigned by Log Q method for six values of
distribution mode separations (d). In these six cases we
kept the mode of the size distribution PrSDIST(x) to 3, and
varied the mode of the PrPDIST(x) respectively to L1=13,
L2=11,L3=9, L4=7, L5=5, L6=3). The right y-axis and
the upper six curves show the path priorities assigned by
the PTP order for the same six cases. As can be seen from
the plot these two methods followed quite different
prefetch sequence Γ.

Now to evaluate the performance, we let the
simulator fetch the pages in order of their priorities. The
system determines the critical lead mass Dlead according
to equation (3) and fetches this segments while the
rendering progresses for current document. (At the same
time it also fetches the feed segment of the current
document). To estimate the expected delay we computed
the estimated speedup experienced by all 21 probable
anchor sequences for the same prefetch sequence U given
by equation (2). Fig-4 plots the observed speedup in the
responsiveness. It shows three quantities-- the maximum,
minimum and the expected average. The later is obtained
by weighing each class’s speedup by the number of

Fig-2

PROBABILITY AND MASS DISTRIBUTION

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ANCHOR SEQUENCE CLASS

S
D

IS
T

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FD
IS

T

PATH TRANS. PROB LOAD SIZE

d

PRIORITY ALLOCATION TO PATHS

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1 6 11 16 21

ANCHOR SEQUENCE CLASS

Lo
g

(Q
)

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

PT
P

L1/log Q L2/log Q L3/log Q L4/log Q L5/log Q L6/log Q

L1/PTP L2/PTP L3/PTP L4/PTP L5/PTP L6/PTP

Fig-3

Log Q PTP

MAX-MIN-EXP SPEEDUP

1

1.2

1.4

1.6

1.8

2

2.2

2.4

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

MAX MIN EXP

Fig-4

Log Q PTP

��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� ����������������� ��� ��	 !"���
	 ��#%$�&'� �
!"& �����)(�*�*�� 	 ������	 �
��&�+����,#%(.-�/�/�/
01�%2��
!�3����4-�/ 5 -�6�+1-�/�/�/�7���&98�������&�+ :1#%(�+1*�*-�;�/ 5 -�;
<
=

 5

surfer’s who follow the path. We assume this to be
proportional to the estimated transition frequencies. The
left L1-L6 set here plots the high-low-mean values of the
observed performance for proposed log Q priority. For
comparison the right L1-L6 set plots the observed
performance for PTP priority.

The PTP priority demonstrates maximum speed-up
in the range of about 1.2 to 1.5 (this is not far from what
have been reported by other studies). It’s mean seems to
be less than 1.4. In contrast Log Q priority consistently
demonstrated superior performance where mean ranged
from 1.5-1.75. Also its maximum and minimum seems to
be consistently much higher. Also, an interesting
observation can be made— best-case improvement is
more dramatic as the mode separation (d) becomes
smaller (L5, and L6).

This gain in performance is not unexpected. The
analytical model explains the optimum improvement of
the expected average responsiveness over all the surfer’s
path classes. The major improvement in the best-case is
due to the fact that the log Q ordering favors shorter jobs
to be cleared first. It enables surfers’ of the smaller
documents to experience major improvement in system’s
responsiveness (from 1.6 to almost 2.2 and above).

5 Conclusions & Current Work
Prefetching seems to be an attractive method for

improving responsiveness of web systems. However,
prefetching need to be performed very selectively. Not
only the branching factors are high, but also, (unli ke the
case of hardware) web is a highly shared resource. In this
research a technique has been proposed for optimally
ordering hyperlinks. The result suggests that significant
performance improvement is possible by incorporating
loading time in to the link priority evaluation.

As indicated, this work is not about the estimation
methods of link transition probabilit y. Whether it is
computed from conventional access log [4,10,12], or from
explicit message exchange [9], the issue addressed here is
how to use them.

Within the scope of this paper, only non-trivial
steps- such as bandwidth partitioning on QoS less Internet
have been outlined (section-3). However, the deployment
of any prefetch system, including the one proposed here
will require significant research on protocols. Few
insightful references on these areas are in [15-18].

Within the scope of this paper, we deliberately
switched off any caching. However, the impact of caching
parameters (such as replacement poli cy, cache size, etc.)
on an integrated scheme is an important area deserving
further study.

The work is currently being funded by DARPA
Research Grant F30602-99-1-0515 under its Active
Network initiative.

6 References:
[1] D. Wessels and K Claffy, ICP and the Squid Web Cache, IEEE

Journal on Selected Areas in Communication, April 1998, Vol 16,
#3, pp.345-357.

[2] Nancy Yeager & R. E. McGrath, Web Server Technology, Morgan
Kaufmann, San Francisco, 1996.

[3] Z. Wang and J. Crowcroft, Prefetching in the World Wide Web. in
procs. of IEEE Global Internet, London, UK, 1996.

[4] T. Palpanas and A. Mendelzon,, Web Prefetching Using Partial
Match Prediction, WWW Caching Workshop, San Diego, CA,
March 1999

[5] Li Fan, Pei Cao, and Quinn Jacobson. Web Prefetching Between
Low-Bandwidth Clients and Proxies: Potential and Performance.
Procs. of the ACM SIGMETRICS' 99, Atlanta, Georgia, May 1999.

[6] M. Crovella, P. Barford, The Network Effects of prefetching, Proc.
Of IEEE INFOCOM 1998, San Francisco, USA, 1998.

[7] Javed I. Khan, Active Streaming in Transport Delay Minimization,
Workshop on Scalable Web Services, Int. Conf. on Parallel
Processing, Toronto, August 2000, pp95-102.

[8] E. Cohen and H. Kaplan. Prefetching the Means for Document
Transfer: A New Approach for Reducing Web Latency. Procs. of
the IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[9] D. Duchamp. Prefetching Hyperlinks. Proceedings of the USENIX
Symposium on Internet Technologies and Systems, Colorado,
USA, October 1999. [Http://www.usenix.org/events/usits99].

[10] Q. Jacobson, Pei Cao, Potential and Limits of Web Prefetching
Between Low-Bandwidth Clients and Proxies, 3rd Int. WWW
Caching Workshop, Manchester, England, June 15-17 1998.

[11] T. Kroeger, D. D. E. Long & J. Mogul, Exploring the Bounds of
Web Latency Reduction from Caching and Prefetching, Proc. Of
USENIX Symposium on Internet Technology and Systems,
Monterey, December 1997, pp-319-328.

[12] P. Pirolli and J. E. Pitkow, Distributions of surfers' paths through
the World Wide Web: Empirical characterizations, Jounral of
World Wide Web, 1999, v.1-2, pp29-45

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk & T. Berners-Lee,
Hypertext Transfer Protocol HTTP/1.1, RFC 2068, January 1997.

[14] Javed I. Khan, Ordering Prefetch in Trees, Sequences and Graphs,
Technical Report 1999-12-03, Kent State University, [available at
URL http://medianet.kent. edu/ technicalreports. html, also
mirrored at http:// bristi.facnet.mcs.kent.edu/~javed /medianet]

[15] Grosso, Paul, Daniel Veill ard, XML Fragment Interchange, W3C
Working Draft 1999 June 30, [Retrieved from:
http://www.w3.org/1999/06/WD-xml-fragment-19990630.html]

[16] A. Dan and D. Sitaram, Multimedia caching strategies for
heterogeneous application and server environments, Multimedia
Tools and Applications, vol. 4, pp.279-312, May 1997.

[16] S. Gruber, J. Rexford, and A. Basso, Design considerations for an
RTSP-based prefix caching proxy service for multimedia streams,
Tech. Rep. 990907-01, AT&T Labs - Research, September 1999.

 [18] J. Jung, D. Lee, and K. Chon, Proactive Web Caching with
Cumulative Prefetching for Large Multimedia Data. Procs. of the
9th International World Wide Web Conference, Amsterdam,
Netherlands, May 2000.

��� ���������
	 ������������������ ����������	 �
���������
��� ��� ���������
�
����� ����������������� ��� ��	 !"���
	 ��#%$�&'� �
!"& �����)(�*�*�� 	 ������	 �
��&�+����,#%(.-�/�/�/
01�%2��
!�3����4-�/ 5 -�6�+1-�/�/�/�7���&98�������&�+ :1#%(�+1*�*-�;�/ 5 -�;
<
=

 i

