
A VERSATILE ALGORITHM FOR LINEAR SYSTEM
PROBLEMS USING ADAPTIVE PIVOTING

Javed I. Khan, W. Lin & D. Y. Y. Yun

Department of Electrical Engineering
University of Hawaii at Manoa
javed@wiliki.eng.hawaii.edu

2540 Dole Street, Honolulu, HI-96822

Published in the Proceedings of the
5th ISMM International Conference on

Parallel and Distributed Computing and Systems
Pittsburgh, October 1992, pp313-315

Abstract
In this paper we present a new parallel method for the solution of three
important linear system problems namely i) matrix inversion ii) solution
of linear system and iii) computation of linear combination of the system
variables, using the same framework on a MIMD array multi-processor
with torus interconnection. This algorithm requires n steps on n2 pro-
cessors with 2 flops step-width. This method also uses a new distributed
pivoting scheme, called Adaptive Pivoting to replaces the costly row
interchange for stability. Due to adaptive pivoting and dual wavefront
communication pattern, the resulting activity on the torus resembles the
ripples on a pond formed by the rain drops. This paper presents the
design, analysis and performance comparison of this matrix algorithm
including the simulation results on a 32 Processor Meiko Transputer.

1 Introduction
With the advent of parallel processing a considerable effort has been

spent in solving linear systems in parallel on a wide variety of architec-
tures [7,5,2]. Most of these algorithms basically parallelize the triangular
factorization. However, it is now widely experienced that the triangular
methods perform poorly in parallel computation [8] because of the
subsequent forward and backward substitutions. In many cases even
classical methods like Gauss-Jordan or Gauss-Seidal outperform them
[4].

Besides efficiency, next important concern in linear systems is the
problem of computational stability [9] due to finite precision arithmetic.
Most of the existing parallel algorithms suggest the use of conventional
row interchange. However, such interchange is prohibitively expensive
[4] in parallel processing. Very few alternate proposals exist to circum-
vent this problem. Recently [3] has mentioned about the idea of using
some kindof threshold. However, there is no satisfactory technique which
can select appropriate threshold without incurring substantial commu-
nication cost.

In this paper we have proposed a new method for solving a set of
linear system problems based on Faddeeva’s [1] non-triangular method
for computing matrix determinant. This new method is faster than most
of theknown parallel methods including the muchused classical methods.
We have also used a new technique called adaptive pivoting which no
longer requires the costly row interchanges for improving stability. It can
work with non predefined pivot set, can dynamically trace the conse-
quences, and still can compute the exact result. Interestingly, it does so
without any extra cost. Previously, we have used similar techniques to
solve matrix inversion only [6]. This paper reports two important
improvementson our earlier research.First, we have extendedour method
and mapping and applied it in solving two other linear system problems
from the same framework, and secondly, we have a new communication
structure which has improved the algorithm efficiency significantly,
specially with this new adaptive pivoting.

2 The Computational Model
Let AX=B is a linear system where X is the vector defining the n

system variables, A is the coefficient matrix, and let CX be any linear
combination of the system variables. Given A, B and C, we want to
compute (i). A-1 (ii). A-1B and (iii). CA-1B.

(i) Inverse Computation: The formal derivation of the procedure
from Faddeeva’s [1] method can be found in [6]. In short, our scheme
for the computation of inverse can be viewed as equivalent to the n-step
elimination performed on the following augmented matrix of size 2nx2n
. An elimination step refers to the computation of aij.k+1=aij.k-aik.k*akj.k/akk
where n<i,j,k<n+1.

This is equivalent to the introduction of extra (1,0,...)T, (0,1,...)T

....(0,0,...,1)T columns and extra (-1,0,....), (0,-1,...) (0,0...,-1) rows
respectively at the end of each phase.

(ii) Linear System Solution: AX=B can be solved by applying the
same computation on the form:

This is equivalent to the method of computing inverse except the
introduced columns at the end of each iteration is (b1,0,...)T, (0,b2,...)

T

....(0,0, bn)
T. At the end of this computation the set of sums of the column

elements will provide the solution.

(iii) Linear Combination of The System Variables: A similar
extension to the augmented matrix of the following form can calculate
the linear combination of the system variables:

This procedure is equivalent to the procedure (ii) except now the
introduced columns are (c1,0,..0), (0,c2,..0)...(0,0 cn). The sum of all the
elements after performing the n-step computation will provide the result.

3 Mapping of The Model
The derivation of section 2 to solve all three forms of the problem

is summarized below:

1.If (i) Set B=C=U, if (ii) Set C=U where U is a vector
with all unit elements.

2. Enter the first phase k=1. Take the original matrix
[aij] and create an extended matrix E1 with eij =aij for
i,j=1,2..n.

3. Add a new row and a new column with all zero
elements except, e(n+1),1.k =-ck and e1,(n+1).k=bk.

4. Calculate ei,j.1=ei,j.1-ei,1.1*e1,j.1/e1,1.1 for all i,j=
2,..(n+1).

5.Consider the elements eij.k of Ek with i,j=2...(n+1) as
the elements ei,j.k+1 of the new extended matrix Ek+1.

6. Repeat steps 2,3 & 4 until k=n.



A I
-I 0






A IB
-I 0







A IB
-CI 0




7. If (ii) Calculate column sum or, if (iii) Calculate
global sum.

Here the dotted subscript .k refers to the kth phase. Steps 2 to 5
constitute the core part of our algorithm. As we shall see later the 7th
step, when properly overlapped, will add just one more phase to the n
phase core.

Wewill now mapthe core. Although thesize of theaugmented matrix
is 2nx2n, but the size of the active portion of the matrix at any elimination
phase is (n+1)x(n+1). Fig-1(a) shows the computations inside the active
portion at any phase. In Fig-1(a) capital letters denote the stored value
and small letters denote the updated value of the local elements stored in
the processors. Fig-1(b) shows a communication pattern and the message
packet contents which can satisfy the data dependency of Fig-1(a). In
unidirectional flow, the last pivot suffers from long idle time because it
becomes the last one in a row to receive data in the new phase. We can
correct the situation if, instead of unidirectional flow, data is sent along
all the 4 directions, then the network diameter reduces byhalf. Fig-1(c)
shows the new communication pattern.

Fig-1

It is evident from the computational model that the above model
directly maps onto a mesh of size (n+1)x(n+1). A little more watchful
observation reveals that at the end of each phase, the data of some old
nodes are no longer being used (the pivot row and pivot column) while,
on the other hand, some new nodes have to be added (in the bottom). We
have decided to map these new elements directly on the emptied nodes.
The consequences are, i). the diagonal transfer of the entire matrix is no
longer required, ii). the logical mesh containing the active matrix is
wrapped and iii) we no longer need (n+1)th row or column.

Fig-2

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L

U/V

L L L L

U/V U/V U/V U/V

p p p p

V

V

V

V

[P=V]
v=1/V v=V/P

[U1=V] [U2=V] [U3=V]

[L1=V]

[L2=V]

[L3=V]

v=-V/P

v=-V/P

v=-V/P

v=V/P v=V/P

[L4=V]
v=-V/P

[U4=V]
v=V/P

(a) COMPUTATIONS (b) COMMUNICATION (c) DUAL-WAVEFRONT

v=V- U.L
P

v=V- U.L
P

v=V-
U.L

P
v=V-

U.L
P

v=V- U.L
P

v=V- U.L
P

v=V-
U.L

P
v=V-

U.L
P

v=V-
U.L
P

v=V-
U.L

P
v=V-

U.L
P

v=V- U.L
P

v=V- U.L
P

v=V- U.L
P

v=V-
U.L
P

v=V-
U.L
P

(a) Complete Taurus (b) Phase 2 (c) Phase 3 (d) Phase 4(a) Phase 1

PHASE PIVOT

Torus can gracefully accommodate all these wrapped meshes. Fig-3
shows how; for a 4x4 structure. The recursive application of above
computation and communication on these logical meshes creates a dual
wavefront activity pattern on the torus with overlapped phases.

The sum-phase (7th step) is required by problem forms (ii). and (iii).
The same communication pattern (Fig 1(c)) is sufficient to support the
sum phases of both the types. Therefore, the net effect of sum-phase on
the over all scheme is just the addition of one extra phase.

4 Adaptive Pivoting
Most pivoting schemes travel along the principal forward diagonal

(PFD). If there is a zero (or small) pivot, the row is usuallly interchanged
with another row with non-zero (or a large) pivot. However, unlike the
sequential algorithms, parallel algorithms have to incur prohibitively
expensive communication cost to perform such interchange (consider the
situation if the old and new rows are far away from each other). We
therefore, suggest skipping the pivot position adaptively, rather than
exchanging rows. Our computational model can indeed support such
flexibility, and more interestingly, without any additional cost. This
flexibility is based on the following two theorems:

Theorem 1: If BT is the resultant matrix generated from A after per-
forming n eliminations steps and P is the set of n pivots used, then the
sequence of selecting the pivots within this set in successive phases does
not effect the final mapping B⇒T where P is as follows:

Theorem 2: If initially the matrix A is mapped onto torus T in such a
way that aij is mapped on tij for i,j=1,2,3....n, and if B is the resultant
matrix generated from matrix A after performing the Faddeeva elimi-
nations (as derived in section 2) using principal diagonal pivots, and if
Plm and Pxy are two members of the applied pivot set P then at the end of
the nTh phase, Tmx contains bly and Tyl contains bxm.

The formal proof of these are in [6]. Property 1 allows our algorithm
to be flexible in selecting pivot positions and to avoid costly row column
interchange. Property 2 provides us with a means to retrace the final
mapping based on the local information (thus at no extra communication
cost).

5 The Algorithm
The algorithm generates a series of successive wavefronts. Each

originates at a phase pivot and then propagates in all four directions. As
shown in Fig-2, within each phase, each of the nodes transmits message
packets containing U/V and L to its neighbors and performs one elimi-
nation. Like the ripples in a pond, the computation propagates from the
pivot center. However, these centers are not static but drift with the
phases. If there is any zero pivot, it is skipped and the algorithm starts
with a psudo-arbitrary (so far the new one is from a new row and new
column) position. To reduce numerical error, if full or column sort is
used, then the pivot center jumps to the maximum valued pivot position.
In either case, no row interchange is necessary. The following algorithm
based on the theorem 2, computes all the elements of the result matrix
and their co-ordinates, using only local information, without any addi-
tional cost. The successive dual-wavefronts, propagating from the

P = {Px1y1
, Px2y2

, …Pxn yn
∋ x1 ≠ x2 ≠ .. ≠ xn, 1 < xj < n , y1 ≠ y2 ≠ .. ≠ yn, 1 < yj < n}

apparently random pivot positions in the torus, generate the interesting
activity pattern which resembles the ripples on a pond caused by the rain
drops.

Below we present a pseudo code version of the core. The program
iterates for n phases over all the nodes of the torus. At the beginning of
each phase, the set_orientation() routine finds the vertical and horizontal
source and destination neighbors for each node depending on their own
relative position w.r.t. the current pivot. If it is at the end, a null is returned
so that send() routine performs a null operation. Since, several pivot
selection strategies can be used for adaptive pivoting, we have assumed
xphase[] and yphase[] arrays are supplying the pivot positions. For
solving problems (ii) and (iii) a sum phase should be added at the end.
The final identity of the elements are in (xx,yy).

int k=0, s=n, p_count=n; else v=v*b[k]/p;
int xphase[],yphase[],xx,yy; send(v:east);
getpid(i,j); send(v:west);

 send(p:horz_dst);
/* Loop for n phases*/ xx=k;
while(p_count) { }
 px= xphase[k];
 py= yphase[k++]; /* If Left Column Elements*/

 elseif(px==i) {
 set_orientation(i, px, send(v:south);
 &vert_dst, &vert_src); send(v:north);
 set_orientation(j, py, recvb(p:vert_src);
 &horz_dst, &horz_src); if(p==ABORT) {

 xphase[s]=px;
/* If Phase pivot*/ yphase[s++]=yx;
 if(px=i and py=j) { p_count++;
 if(v <= thres) { }
 v= ABORT; send(p:vert_dst);
 xphase[s]=px; v=-v*c[k]/p;
 yphase[s++]=yx; yy=k;
 p_count++; }
 }
 send(v:south); /* For Other Elements*/
 send(v:east); else {
 send(v:north); recvb(u:horz_src);
 send(v:west); if(u==ABORT) {
 v=1/v; xphase[s]=px;
 } yphase[s++]=yx;

 p_count++;
/* If Pivot Row Elements*/ }
 elseif(py==j) { send(u:horz_dst);
 recvb(p:horz_src); recvb(l:vert_src);
 if(p==ABORT) { send(l:vert_dst);
 xphase[s]=px; v=v-u*l;
 yphase[s++]=yx; }
 v=ABORT; p_count--;
 p_count++; }
 }

6 Complexity Analysis

6.1 Performance and Scalability of the Algorithm
The performance of the wave-front algorithms depend on the time

between the initiation of two successive phases. For n phase computation

(n=n+1 for problem ii. & iii.) There are n-1 phase gaps. The last phase
propagates to the logical end in time 2*(n/2) communication steps and n
computations. Thus, the parallel execution time is:

Tpar=(4tcomm+tsub+tmul+tdiv)*(n-1)+n*tcomm + .5n*tcomp

If the torus size is nxn and matrix size is mxm, using block decom-
position the scalability measure is given by following execution time:

Tpar=(4tcomm+(m/n)(tsub+tmul+tdiv))*(m-1)+n*tcomm + m*tcomp

The performance improvement by dual-wavefront communication
over mono-wavefront communication is evident in the 2nd and third
terms of these two expressions.

6.2 Performance Comparison with Other Methods
Here we will provide a brief comparison between the three frequently

used linear system algorithms namely LU decomposition, Gauss-Jordan
and Gauss-Seidel. We will assume all use n2 processors to process nxn
matrix. LU has the worst parallel complexity (but best sequential). In
addition to n steps for factorization it requires another 2n steps for forward
and backward substitutions. Gauss-Jordan needs n steps for elimination
and another n steps for substitution. The parallel performance of
Gauss-Seidel is better, however it has a wider phase (4 Flops) because
some (all for inversion) of the processors have to house two elements. If
the communication cost is predominant, then this disadvantage becomes
insignificant. For the problems (ii) and (iii) our method requires 1
additional step for the sum phase. Clearly our method has the least parallel
complexity despite its high computation count. This advantage is most
visible for matrix inversion which is often considered the most complex
among the three problems.

7 Simulation Results
We have implemented the dual wave front algorithm with adaptive

flexible (any general) order pivoting and tested its performance on a 32
node Meiko Transputer. Fig-3 shows the relative speedup with the
variation of the matrix size for four different torus sizes. We varied the
matrix size from 10x10 to 80x80 and used block decomposition. Fig-4
shows the improvement in speedup from mono to dual wavefront con-
figuration.

Fig-5 shows the effect of adaptive pivoting on execution cost. In this
experiment, we have used a principal forward diagonal pivoting with 4
different sequences and observed the computation time for both mono
and dual wavefront versions. The dual wavefront communication pre-
formed better than the mono wavefront communication.

Fig-3

Fig-4

DUAL WAVEFRONT SPEEDUP

MATRIX SIZE

S
P

E
E

D
U

P
 (

T
p/

T
s)

10 20 30 40 50 60 70 80

10

9

8

7

6

5

4

3

2

1

0

2x2 Torus

3x3 Torus

4x4 Torus

5x5 Torus

DUAL vs. MONO WAVEFRONT SPEEDUP

MATRIX SIZE

S
P

E
E

D
U

P

5x5 TORUS

10 20 30 40 50 60 70 80

10

9

8

7

6

5

DUAL

MONO

Fig-5

8 Conclusion
We have presented a parallel algorithm which can solve three

important linear system problems from the same computational frame-
work. It uses an nxn torus connected MIMD parallel processor to invert
an nxn matrix in O(n) time. This algorithm is one of the most efficient
and compact among the existing parallel methods.

On the issues of numerical stability, we have shown that our new
adaptive pivoting can replace the traditional row interchange methods
for improving numerical stability against zero or small pivots. However,
to improve stability against ill condition matrix, our method suffers
similar disadvantages [3] like the other elimination based algorithms.
This new pivoting scheme takes the advantage of the fact, that the tra-
ditional principal forward diagonal pivot selection order is not an
intrinsic part of the problem, but merely an arbitrary choice to suit the
way we represent matrix. The uniform torus space (where no node is
special) and the adaptive pivoting together transcend above this artificial
restriction and exploit the full advantage of the flexibility inherent in the
computation structure. This new adaptive pivoting has the potential of
widespread application in vast area of parallel matrix computations.

DUAL vs. MONO WAVEFRONT IN PIVOTING

PIVOT SEQUENCE IN SUCCESIVE PHASES

E
X

E
C

U
T

IO
N

 T
IM

E
 (

m
se

c)

00-11-22-33 00-22-33-11 00-22-11-33 00-33-22-11

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

12% Improvement

9% 6%
5%

MONO-WAVEFRONT DUAL-WAVEFRONT

References

[1] Faddeeva, V. N., Computational Methods of Linear Algebra,
Chapter 2, Translated by C. D. Benster, Dover Pub., New York
1959.

[2] Geist, G. A., & M. T. Heath, Matrix Factorization on a
Hypercube Multiprocessor, SIAM Proc. 1st Conference on
Hypercube Multiprocessor, p-161-180, Aug 1985.

[3] Gill, P. E., W. Murray & M. H. Wright, Numerical Linear
Algebra and Optimization, v. 1, Chapter 3 & 4, Addison-
Wesley Publishing Company, California 1991.

[4] Heller, D., A Survey of Parallel Algorithms In Numerical
Linear Algebra, SIAM Review, Vol 20, no 4, October 1978.

[5] Kant, R. M. & T. Kimura, Decentralized Parallel Algorithms
for Matrix Computation, Proc. 5th Annual Symposium of Com.
Arch., P-96-100, 1978.

[6] Khan, J. I., W. Lin & D. Y. Y. Yun, A Parallel Matrix Inversion
Algorithm on Torus with Adaptive Pivoting, Proc. 21st Inter-
national Conference on Parallel Processing, Chicaga, (to be
published), August 1992.

[7] Kung, H. T. and C. E. Leiserson, Systolic Array (for VLSI),
Technical Report CS79-103, Carnegie-Mellon University,
April 1979.

[8] Modi, J.J., Parallel Algorithms and Matrix Computation,
Oxford University Press, Oxford, 1988.

[9] Wilkinson, J. H., Error Analysis of Direct Methods of Matrix
Inversion, J. Assoc. Comp. Mach. 8, p281-330, 1961.

