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Abstract
Matrix inversion is an important operation used for solving linear system problems. It is

crucial to ensure correctness of the arithmetics for the inversion. In this abstract we summarize
key ideas and approaches of a parallel matrix inversion algorithm which has capabilities of error
detection and correction. We focus on algorithm enhancement for detecting and correcting both
computational and communication errors. A major feature of the proposed algorithm is that we
carefully insert redundant computations for error detection so as to conform with the natural
communication structure of the original algorithm. These redundant computations are treated in
the same way as actual computations for matrix inversion. The well match between algorithm and
architecture considerably reduces overhead due to error checking redundancy. The conformation
lends to small increases in hardware and response time. The proposed scheme is implemented and
tested.

1 Introduction
Matrix inversion is an operation used for solving linear system problems[1-3]. The operation

involves a large number of arithmetics. It is crucial to ensure the correctness of the arithmetics. In
this paper we are concerned with incorporating fault-tolerance capability into a parallel matrix
inversion algorithm so that errors can be detected and corrected. Our method uses hexagonally
connected mesh (HCM).

The proposed error-detection algorithm is based upon an algorithm-based fault tolerance
scheme, which is first presented by Hwang and Abraham [4,5]. They introduce a checksum approach
that provides single-error detection for basic matrix operations. The checksum technique has shown
to be considerably effective in many applications such as QR decomposition, matrix multiplication,
and eigenvalue problem [4-6,9]. Most of them only consider computational aspects of the checksum
scheme, while neglecting its effect on inter processor communication of the target machine. The
proposed algorithm is different from previous work in three ways: (1) we consider a different matrix
inversion method, called Fadeeva method [7]; (2) redundant operations are deliberately injected
and arranged in conform with original communication structure; and (3) in many cases, it not only
can detect single errors but can perform error corrections.

The fault model we assume here comprises two types of single errors: (1) computation errors:
they are erroneous arithmetic results produced by processors; (2) communication errors; They are
data messages which are corrupted or damaged during transmission between processors.

2 A Parallel Matrix Inversion Algorithm
2.1 A Computation Method for Matrix Inversion

The basis of the Faddeeva algorithm is a compact computational scheme originally used to
compute matrix determinants[7-8]. The compact scheme is described as follows. Throughout this
paper we assume that A is a nonsingular matrix and pivots are all nonzeros. Given the matrix:



We compute the determinant of A. Let a11≠0. Extract the element a11 from the first row. Thus
we have:

where aij.1=aij-ai1*a1j/a11, 2 i, j n. That is, the original determinant is reduced to a product of
a11, and a determinant of (n-1)th order. Now suppose a22.1 ≠0. We carry out the same computation
with the reduced determinant. It is further reduced and has the form

where aij.2=aij.1-ai1.1*a1j.1/a11.1, 3 i, j n. Carrying out the computation iteratively for n times,
we eventually obtain a product

provided a11, a22.1, ..., ann.n-1 are all non-zero. During the course of reduction, each iteration k,
1 k<n, involves (n-k)2 computations of aij.k, k < i, j n. The key idea of inverting matrix is to compute
its cofactors by using the compact scheme depicted above. To compute the cofactor of aij, we need
to augment A with an additional row and an additional column in the following manner

A =









a11 a12 … a1n

a21 a22 … a2n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

an1 an2 … ann









(1)

| A |= a11*









a11.1a12.1…a1n .1

a21.1a22.1…a2n .1

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

an1 .1an2 .1…ann .1









(2)

≤ ≤

| A |= a11 ⋅ a22.1 ⋅









a11.2a12.2…a1n .2

a21.2a22.2…a2n .2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

an1 .2an2 .2…ann .2









(3)

≤ ≤

| A |= a11*a22.1*….*ann .n − 1,

≤ ≤

A =











a11 a12 … a1n b1j

a21 a22 … a2n b2j

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

an1 an2 … ann bnj

bi1 bi2 … bin cij













We refer to such a matrix as the augmented matrix of the element aij. Next we show that the
inverse of a matrix can be obtained by applying the compact scheme to the augmented matrix.

Theorem 1: The inverse of an nxn nonsingular matrix A is

where elements cij.n, 1 n,j n, are obtained by using the compact scheme of the augmented
matrix of A, provided a11, a22.1,..ann,n-1 are non-zero.

Proof: For an element of the matrix aij, we may obtain its augmented matrix by (4). If we
delete the ith row and the jth column from the augmented matrix, the determinant of the resulting
matrix actually is -Aij. On the other hand, if we apply the compact scheme to the (n+1) by (n+1)
augmented matrix, the determinant of the augmented matrix should be -Aij. As a result of this, we
have

-Aij=a11*a22.1*...*ann.n-1*cij.n=|A|*cij.n.

By Cramer’s Rule, we have

2.2 Algorithm Mapping

In the augmented matrix [4], in iteration k, 1 k n-1, only computations aij.k, i,j>k, are active,
while other computations aij.k, i,j k remains idle. Throughout our discussion active computations
of this type are referred to as essential computations. The sum of essential computations in each
iteration is universally equal to n2.

bim = {
0, if m ≠ i
1, if m = i ,

bmj = {
0, if m ≠ j
1, if m = j ,

cij = 0 (4)

A−1 =









−c11.n − c12.n… − c1n .n

−c21.n − c22.n… − c2n .n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

−cn1 .n − cn2 .n… − cnn .n









(5)

≤ ≤

A−1 =
1

| A |
*









A11 A12 … A1n

A21 A22 … A2n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

An1 An2 … Ann









=









−c11.n − c12.n… − c1n .n

−c21.n − c22.n… − c2n .n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

−cn1 .n − cn2 .n… − cnn .n









≤ ≤
≤



The target hardware is a hexagonally connected mesh (HCM) as shown in Figure 1(a). The
algorithm requires an nxn HCM for inverting an nxn matrix. The essential computations of the kth

iterations are mapped to processor P[x,y], 1 x, y n

aij.k (i,j >k) →P[i-k,j-k]
bij.k (i k<j) →P[i-k+n,j-k]
bij.k (j k<i) →P[i-k,j-k+n]
cij.k (i,j k) →P[i-k+n,j-k+n] (6)

This mapping scheme shows how the interprocessor communication takes place to move
operands to proper processors and makes them available to essential computations. All the essential
computations are of the form

xij.k=xij.k-1-xik.k-1*xkj.k-1/xkk.k-1 (7)

where x could be a, b, or c, depending on essential computation type and iteration count. The
parallelization algorithm essentially consists of three phases: shift, multiply and broadcast.
Communication structure of the three phases are different.

The first phase deals with moving xij.k-1 of (7) to new processor locations to compute xij.k. It is
evident that this requires a diagonal shift of all the elements as shown in Figure 1(b).

The communication structure associated with the second phase is a 2-D mesh where each
processor is connected by orthogonal connections. Peripheral processors propagate xik.k-1 and xkj.k-1
through connections in x direction and in y direction, respectively. The communication pattern is
shown in Figure 1(c). Each processor, upon receiving both the peripheral values, performs the
computation xik.k-1 * xkj.k-1.

In the third phase, a broadcast tree is used to make akk.k-1 from processor P[1,1] available to
the other processors. Figure 1(d) shows the communication pattern.

Now all the operands for computing (7) are present in the processors. The kth iteration
completes by this evaluation. n such iterations with the three overlapped phases are required to
compute the inverse. Consecutive computation and communication wavefronts corresponding to
the three phases in successive iterations sweep across the HCM from the northwest corner to the
southeast corner. Figure 2 shows a schematic diagram of such a wavefront notion for mapping our
algorithm onto the HCM.

3 Algorithm for Error Detection
3.1 Error Detection Using Check-Sum Technique

We inject redundant computations and communications into the aforementioned algorithm
for computing checksums of essential computations. By the end, results of redundant computations
are used to test correctness of an inverse matrix.

The proposed algorithm necessiates a linear increment in array size and thus requires an
(n+1)x(n+1) HCM to invert an nxn matrix. All the processors execute the following algorithm to
compute the inverse.

In phase I, the algorithm requires additional calculations to update contents of essential
computations in checksums rows and columns. The communication structure is shown in Figure
1(b). At the end of the last iteration, resulting elements of the inverse matrix are stored in processors
P[i,j], 2 i,j n+1, and checksum elements are stored in processor P[1,j] and P[i,1],1 i,j n+1. Figure
3 illustrates the crosses of the checksum elements that appears in the four iterations for inverting
an 3x3 matrix on an 4x4 HCM.

≤ ≤

≤
≤

≤

≤ ≤ ≤ ≤



The mathematical treatment in the following theorem shows the correctness of our algorithm.
It shows that at the end of the execution, the top row and the leftmost column should contain the
summation vectors of the resulting inverse matrix. Let A be an nxn matrix to be inverted and A be
the augmented matrix of A with summation column and summation row, that is,

where

Theorem 2: By applying the algorithm to A, we have,

where the elements cij are the inverse of matrix A as equation (5) and,

Proof: The first part can be proved in a similar way as Theorem 1. It is omitted here. The
second part can be proved by induction. In the first iteration, by (7) and (8) we have:

A’ =











a11 a12 … a1n a1(n + 1)

a21 a22 … a2n a2(n + 1)

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

an1 an2 … ann an (n + 1)

a(n + 1)1 a(n + 1)2 … a(n + 1)n a(n + 1) (n + 1)











(1)

ai(n + 1) = ∑
i = 1

n

aij, a(n + 1)j = ∑
j = 1

n

aij, and the

a(n + 1) (n + 1) = ∑
i = 1

n

∑
j = 1

n

aij (8)

A−1 =









−c11.n − c12.n … − c1n .n

− c21.n − c22.n … − c2n .n

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

− cn1 .n − cn2 .n … − cnn .n









b1(n + 1) = ∑
i = 1

n

cij, b(n + 1)j = ∑
j = 1

n

cij,

and b(n + 1) (n + 1) = ∑
i = 1

n

∑
j = 1

n

cij.



where 1 <j n. Now suppose in the kth iteration, we have

In the kth iteration, we should have

where 1 j k+1. Likewise we should have

where k+1 < j n. As a consequence of these, in the nth iteration, we should have,

where 1 j n. Similarly, we can prove that

b(n + 1)1.1 = b(n + 1)1.0 − a(n + 1)1.0*b11.0/a11.0

= 1.0 − a11.0 + ∑
i = 2

n

ai1 .0 + 1.0
*1.0/a11.0

= ∑
i = 2

n

bi1 .1 + c11.1

a(n + 1)j .1 = a(n + 1)j .0 − a(n + 1)1.0*a1j .0/a11.0

= ∑
i = 2

n

aij .1 + bij .1,

≤

b(n + 1)j .k = ∑
i = k + 1

n

bij .k + ∑
i = 1

k

cij .k, 1 ≤ j ≤ k , and

a(n + 1)j .k = ∑
i = k + 1

n

aij .k + ∑
i = 1

k

bij .k, k < j ≤ n ⋅

b(n + 1)j .(k + 1)

= b(n + 1)j .k − a(n + 1) (k + 1).k ⋅
b(k + 1)j .k

akk .k

= ∑
i = k + 1

n 


bij .k − ai(k + 1).k ⋅

b(k + 1)j .k

a(k + 1) (k + 1).k





= ∑
i = k + 2

n

bij .k + 1 + ∑
i = 1

K + 1

cij .k + 1,

≤ ≤

a(n + 1)j .(k + 1) = ∑
i = k + 2

n

aij .k + 1 + ∑
i = 1

K + 1

bij .k + 1

≤

b(n + 1)j .n = ∑
i = 1

n

cij .n

≤ ≤

bi(n + 1).n = ∑
j = 1

n

cij .n and a(n + 1) (n + 1).n = ∑
i = 1

n

∑
j = 1

n

cij .n.



After elements cij.n are computed, we propagate checksums through columns and rows for
verifying computations of cij.n, 1 i,j n. Each processor P[i,j], 2 i, j n+1, subtracts its cij.n from a
checksum received from a neighboring processor and then passes the resulting checksum to the
succeeding processor in the same direction. Resulting checksums at peripheral processors of the
(n+1)th column and the (n+1)th row are referred to as Error Detecting Vector (EDV). EDV consists
of two major components EDVx and EDVy. If no error occurs during the execution, EDVxand EDVy
should be zero.

3.2 Error Identification

There are 5 major classes of single errors depending on the EDV patterns as shown in Figure
4. These patterns can be used to identify errors. These are the following:

(1) Class A: Errors of aij.k, 1 k n. This class makes all the elements of EDV non-zero as
shown in Figure 4(a). There are two subtypes: (i). A.1: when k<i n. In this situation an erroneous
aii.k (pivot) contaminates all the essential computations, and (ii) A.2: when k<i, j n and i≠j. By (7),
aij.i-1 is used for evaluating amj.i, i<m n+1, and bmj.i, 1 m i. Therefore, such errors also contaminate
all the subsequent essential computations.

(2) Class B: Errors of bij.k 1 k n. There are again two subtypes; (i) B.1: when i k<j. Unlike
errors of class A, an erroneous bij.k causes local damage to essential computations bij.m, k<m<j n and
i m. At the end of the nth iteration, errors are confined to bi(n+1).n and cij.n 1 j n. (ii) B.2: when j k<i.
This is the symmetric situation of (i). Figures 4(b) and 4(c) show these two subtypes of class B
errors.

(3) Class C: Errors of cij.k, 1 k n and 1 i, j k. Such errors can only effect subsequent essential
computations of cij.m, k<m n. Thus, the EDV pattern at the end is shown in Figure 4(d).

(4) Class X: Errors of (n+1) column and row. This is further divided into three subtypes.
There corresponding EDV patterns are shown in Figure 4(e)-(g). A Common characteristic among
EDV patterns of the three subclasses is that at least one of EDVx(n+1) and EDVy(n+1) contains a
non-zero element. These subclasses are: (i) X.1: errors in ai(n+1).k, 1 k n. Here errors propagate like
that of B.1, except that the error is indicated at EDVx(n+1) instead. (ii) X.2: errors in a(n+1)j.k,1 k n,
which is symmetric to X.1, (iii) X.3: errors in a(n+1)(n+1).k, bi(n+1).k and b(n+1)j.k, 1 k n, 1 i, j k. This is
similar to class C.

(5) Class Z: A single EDVx(i) or EDVy(j) becomes zero. Because checksum elements flow
straight through columns or rows, only one element of EDV will be affected in the presence of a
single error.

4 Error Correction Using EDV
Errors of class A is considered incurable. Errors of class B and C can be corrected in the

following way. Errors of class X are not propagated to the essential computations. Thus, even in
the presence of class X error, inverse is correctly obtained. Errors of class Z refer to incorrect
computations performed for checksum testing. Thus they do not cause damage to an inverse matrix
either. Below we present an error correction method for class B and C errors.

(1) Correction of Class B: In case of class B.1, add EDVy(j) to -cij.n for 1 j n. In case of class
B.2, add EDVx(i) to -cij.n for 1 i n. Note, this action also restores the checksum condition.

≤ ≤ ≤ ≤

≤ ≤
≤

≤
≤ ≤ ≤

≤ ≤ ≤
≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
≤

≤ ≤
≤ ≤

≤ ≤ ≤ ≤

≤ ≤
≤ ≤



(2) Error Correction for classes C, X and Z: In the case of erroneous cij.k, 1 k n, 1 i, j k,
exactly EDVx(i) and EDVy(j) will become nonzero in n iterations. The intersection of the ith row
and jth column of the inverse matrix locates the erroneous matrix element. Due to the confinement,
errors of this class are considerably easy to correct. The procedure is: add EDVx(i) or EDVy(j) to
cij.n.

Although incorrect essential computations of class X also incur non-zero elements present in
EDVx and EDVy, their damages are not as critical as those of A, B and C. From (7) we know that
errors of this class are never propagated to other essential computations of classes A, B and C,
which have a direct impact on an inverse matrix. Hence, even in the presence of errors of class X,
we still obtain a correct inverse. Errors of class Z refer to those incorrect computations performed
in the last phase of the algorithm. Neither do they cause damages to an inverse matrix. Therefore,
errors of the class can be ignored.

5 Summary
We have presented a parallel matrix inversion algorithm with the capability of error checking

and correction. The strength of this algorithm lies in the fact that the redundant computations are
integrated and overlapped with the essential computations. Five major classes of errors and their
error patterns are identified. Procedures are provided to correct critical errors.

≤ ≤ ≤ ≤
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