
To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 1

Symbiotic Rate Adaptation for Time Sensitive Elastic
Traffic with Interactive Transport

Javed I. Khan and Raid Y. Zaghal
Networking and Media Communications Research Laboratories

Department of Computer Science, Kent State University
233 MSB, Kent, OH 44242
javed|rzaghal@cs.kent.edu

Abstract—Interactivity in the transport protocol can greatly benefit transport friendly applications generating streaming traffic.
Recently we have developed iTCP, which can provide event notification to the subscriber of its communication service. This is
operationally state equivalent to the conventional TCP except applications can optionally subscribe, receive, and in real-time
react to selected local end-point events. This simple extension opens the horizon for a spectrum of smart application level
solutions to be realized for many of the current hard problems. In this paper we demonstrate a new paradigm of congestion
management for time sensitive elastic traffic. Based on the transport layer feedback, a rate adaptation mechanism kicks in. This
mechanism provides a generation rate control with guaranteed TCP buffer delay. We have recently implemented and tested the
real system on the Active Network (ABone) testbed for video streaming to worldwide sites. In this paper we share the
performance of this system and report observed dramatic improvements in time-bounded streaming traffic.

1 Introduction

In any real world service provisioning system
interactivity can be considered a vital aspect of the
design. If subscriber system is made aware of selected
service level events, it is possible in many cases to
device smarter solutions at the subscriber layer or
above when the service layer encounters difficulty.
Typically, upper layer entities have more global view
of the system and thus are able to execute solutions that
are more holistic and effective. Unfortunately, current
network transport protocols do not have this
transparency. It seems, for the case of networking that
this critical shortcoming at the interface between
existing applications and current networks has made
solutions to some of the networking problems
remarkably harder. With the advent of sophisticated
applications and their advanced transport needs, current
transport services are becoming increasingly
inadequate. This inadequacy has also prompted recent
attempts towards recreating new and much complex
transport services which would partially recreate new
functionalities at the network or system middle layers
[1, 2, 24]. For example, Congestion Manager [1, 2] is a
system layer component which provisions aggregate
congestion control when multiple streams from the
same end-point attempt to send. Unfortunately,
majority of these ─though they offer specific
functional advantages─ enormously increase the
network or system layer complexity at the end.
Unfortunately, such complex and permanent additions
to the system layer appear to be questionable. When

their complexities are weighted against their general
advantages over a broad range of applications, they do
not seem to be gaining any acceptance. Due to the
same inadequacy, in the last few years it has also been
felt that for advanced applications (such as real-time
streaming); the applications themselves have to be
more integrated in the solution. Particularly promising
is the research in the new TCP friendly paradigm [13,
15, 16, 21, 22, and 23]. Due to the lack of convenient
means to obtain network states, these systems rely
completely on application-layer techniques to face the
network impairment. Several works such as [4, 18]
suggested sending multilevel redundant information
which will eventually increase the burden on the
network. Many have to tediously guess the underlying
network state using end-to-end estimations. These can
be cumbersome and even inaccurate guess work. A set
of recent works [22, 23] suggested rate control based
on formal models. These are robust formally. However,
they are designed to be used on RTP like end-to-end
estimations. Due to the inherent round trip delay
involved, the adaptation time constant for these end-to-
end estimations can be unbearable for more time
critical applications, and it may severely degrade the
model’s intended performance. Overall, it is very
difficult to build network friendly applications if the
network itself is non-friendly and unwilling to interact.
In contrast, a network service layer which is
interactive1 and transparent to demanding applications

1 It is interesting to note that the original TCP proposal (RFC007,
RFC793) did call for interlayer interactivity, but subsequent
implementations ignored it. Some forms of callback facility have

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 2

can open up a new paradigm of building applications
and systems which are genuinely network friendly.
Indeed much more can be gained; with such
transparency, at the application (or subscriber) layers
not only much more sophisticated and targeted
solutions can be designed, but also this simple and
intuitive approach can drastically reduce the
complexity of network system layers. It can also
empower a new generation of truly transport friendly
applications which can adapt and execute more
effectively with dynamic network conditions ─which
are not possible at network layers only. To provision
such interactivity, we have recently implemented and
released iTCP [8, 10]. We have also demonstrated a
decoupling formalism called Transientware (T-ware),
where sophisticated yet disposable application-level
components can be selectively invoked when
subscribed events occur at the transport layer [9]. This
system makes a subset of its internal events/states
accessible. The system is internally state equivalent to
conventional TCP. Thus, it does not require all systems
to be necessarily modified. Only a sending application
at one endpoint which needs advanced adaptation may
choose to use it. Also, its interface is legacy
compatible, thus, other applications at the same
endpoint can run without modification

A particular problem we try to address with this new
interactive TCP is the optimum rate management-based
congestion response and particularly the one for time-
sensitive streaming traffic. Most of the network level
schemes for congestion response are based on delaying
traffic at various network points. The more classical
schemes depend on numerous variants of packet
dropping in the network, prioritization (graceful delay
in router buffer), admission control (delaying at
network egress points), etc. However, a key aspect to
note in all is that they introduce time distortion in the
transport pathway of the application. Though this is
harmless to time-insensitive traffic such as email or
FTP, but they distort the temporal characteristics of
time-sensitive traffic such as multimedia streaming or
control data. The recent solutions here too are based on
complex network or system layer addition (such as
[1]). We have demonstrated simple interactivity-based
congestion management scheme for time-sensitive
elastic traffic. Till to-date effectively no handle was
given to application to participate in the congestion
management. In contrast to network or system layer
solutions, the general principle we follow is simple and
intuitive. It seems an effective delay conformant

only been marginally cited in recent literature. Unfortunately none
gives the issue any in depth technical consideration.

solution for time-sensitive traffic can be designed if the
original data volume can be reduced by its originator─
the application.

To demonstrate the efficacy of this principle, we have
also designed a corresponding advanced video rate
transcoder system [11, 12] that works in symbiosis
with the network. This transcoder actively participates
in a sophisticated symbiotic back-off scheme in
application layer with deep transport level knowledge
resulting in more effective joint quality/delay sensitive
communication.

The adaptation is applicable for traffic where it is
possible to dynamically adjust the data generation rate.
We call it elastic traffic. Most perceptual data, such as
audio and video streams generally belongs to this
traffic class. The resulting scheme is similar in spirit to
the TCP-friendly approaches. However, there is a
fundamental difference in how it is done; the network
or system layers remain as simple as possible. The
responsibility of the network layer is simply to pass on
only selected end-point events to the application. Since,
the solution is now implemented at the application
level; therefore it can be made much more
sophisticated without a significant increase in network
layer complexity.

In this paper, we provide a mechanism where, in the
face of congestion, a generator can still provide
sending buffer delay guarantees. As we will show the
overall solution is not only intuitive and simple, but
also surprisingly effective when compared to many
other recently proposed schemes, which have involved
much more complex system/network layer
reorganization. We have tested the entire system for
symbiotic video streaming to worldwide destinations
using the Active Network Backbone (ABone) testbed,
which has been recently developed with new facilities
for automatic deployment of new protocols. In this
paper we report performance of the system on the
ABone.

The paper is organized as follows; next we show TCP’s
congestion control mechanism and internal events. In
section 3 we discuss iTCP, its event model and an
overview of its implementation architecture. A
complete discussion of iTCP can be found in our
technical report [10]. In section 4 we explain our
mathematical model for symbiosis throttling which
provides optimal video encoding rate. In section 5, we
show how the T-ware modules were implemented
based on the symbiosis throttling model and iTCP
feedback, and in section 6 we discuss experimental
results. Section 7 concludes the paper.

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 3

2 Congestion Control in TCP
TCP is a connection-oriented unicast protocol that
offers reliable data transfer as well as flow and
congestion control. TCP maintains a congestion
window that controls the number of outstanding
unacknowledged data packets in the network. Sending
data consumes slots in the sender's window, and the
sender can send packets only when free slots are
available. When an acknowledgment (ACK) for
outstanding packets is received, the window is shifted
so that the acknowledged packets leave the window
and the same number of free slots becomes available.

2.1. Congestion Control Algorithms

On startup, TCP performs slow-start, during which the
rate roughly doubles each roundtrip time to quickly
gain its fair share of bandwidth. In steady state, TCP
uses an additive increase, multiplicative decrease
mechanism (AIMD) to detect additional bandwidth and
to react to congestion. When there is no indication of
loss, TCP increases the congestion window by one slot
per roundtrip time. In case of packet loss indicated by a
retransmission timeout, the congestion window is
reduced to one slot and TCP re-enters the slow-start
phase. Packet loss indicated by three duplicate ACKs
results in a window reduction to half of its previous
size. Therefore, the two principal mechanisms that TCP
uses to detect network congestion are (i) when the
retransmission timer times out and (ii) when three
duplicate ACKs arrive. Two algorithms then contribute
to the TCP congestion control behavior; these are the
classic algorithm of slow-start and congestion-
avoidance [5], and the augmentation of fast-retransmit
and fast-recovery [6]. Figure 1 and Figure 2
respectively show the relevant details of the two
algorithms.

2.2. Congestion Control Events

Table 1 lists six events that internally occur when the
TCP invokes a congestion control algorithm. Although
many other TCP events might occur during a TCP
session (e.g., flow control events or connection
establishment and termination events), we are only
interested in congestion control events.

In table 1, the column labeled (SSCA) refers to events
that take place in the Slow Start/Congestion Avoidance
algorithm, and the label (FRFR) refers to events that
take place in the Fast Retransmit/Fast Recovery
algorithm. These events are also presented in figure 3.
The graph given in figure 3a shows the sequence of
events of the SSCA algorithm and their affect on
effective bandwidth. Figure 3b shows the same
sequence for the FRFR algorithm. However, in general
design we expect only a subset of the internal events of
the protocol to be of interest to the subscriber

application. Only a subset of these is made accessible
via the interface. An application instance typically
subscribes even to a subset of the accessible events.
The column (Sub) shows subscribable events in our
design.

3 iTCP: interactive TCP
3.1 Model Architecture
The Interactive Transparent Networking paradigm
provides a framework for applications to receive
instant notification about the service state information
from various network layers on which it critically
relies. In this section we provide a brief description of
the framework. More information can be found in our
previous work in [8, 9, 10]. The purpose of the
framework is to provide a means to application
programs running in the upper layers to subscribe to a
selected set of transport events.

We have provisioned the above in the following way.
Under this framework protocols are modeled as per
their extended finite state model (EFSM). The
protocols, particularly the transport protocol then
makes a selected set of events accessible. Also, some
selected standard compliant state variable are also
made readable. However, this process does not involve
changing any functionality of the core protocols
themselves. Thus this reengineering has no impact on
the network side dynamics of the protocol.
Applications can then selectively subscribe to the
available events, if any. By subscribing, an application
program essentially binds itself to the network protocol
and declares that it wishes to be notified–through
signaling—when certain events (state transitions) occur
at that level. Once they are notified, subscribers can
also then pull up the required service state information
when available, perform the actual action by
application level components called Transientware
Modules (or T-ware) which run at the application layer.
In figure 4 we show the general architecture of a TCP-
based interactive protocol.

Upon opening the socket, an adaptive application can
bind a T-ware to a designated TCP event by
subscribing with the kernel. This is represented by
arrows 1 and 2 in figure 4. The binding is optional; if
the application chooses not to subscribe, the system
defaults to the silent mode identical to classic TCP.
When the event occurs in TCP, the kernel sends a
signal (3a) and at the same time it saves the event
information (3b). A special Signal Handler catches the
signal and probes the kernel for the event type (4a, 4b).
The handler then invokes the appropriate T-ware
module to serve the event (5). These T-wares are
usually small programs supplied by the user or by a
third-party as ready-to-run executables custom-

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 4

designed to handle certain events. One T-ware is
forked by the signal handler per signal to take some
action knowing that the event (evt) has just occurred
in the kernel space (e.g., to reduce outbound bit rate to
the transport layer when a congestion event is
reported).

The probing API allows the T-ware to probe additional
information about the state of the TCP connection (6a,
b). This information includes relevant fields from the
TCP control block such as: current send window size
(snd_wnd), congestion-control window size
(snd_cwnd), threshold for slow-start
(snd_ssthresh), retransmit value (t_rxtcur),
and round-trip time (t_rtttime). The T-ware can
use these transport state parameters to determine
precise adaptive action plan for the application (for
example calculate a new generation schedule that
guarantees certain delivery time bound of the traffic).
The model allows the T-ware to probe the TCP at any
time to get the updated values of these parameters. The
model also allows event access control which allows
the network administrator to restrict access to kernel
state variable by each T-ware module.

3.2 Compatibility & Interoperability
In the design of the Interactive TCP protocol we have
retained three important protocol engineering
principles namely (i) network functional compliancy
(ii) state-transition compliancy, and (iii) default-to-
classical extension interface model. These principles
provide important advantages to the scheme. Its
interface mechanism with IP layer remains functionally
identical with TCP classic. Thus, it remains fully
operational with all other currently deployed TCP
remote-hosts. Only the server/transport hosts which are
interested to run advanced adaptive software
applications need to locally upgrade to the extended
model. Other communicating hosts need not to modify
anything on their site. Secondly, its state-transition
behavior also remains identical to that of TCP classic.
Thus, all other network embedded transparent elements
which rely on certain assumptions about TCP behavior
(such as congestion control schemes, fairness,) will
also not be affected. Thirdly, the default-to-classical
extension of application programming interface (API)
enables the TCP interactive host to concurrently run all
other existing legacy applications without any code
modification. Thus, it keeps all legacy applications
100% compatible even on the updated host. Notably,
many other suggested congestion management schemes
potentially violate these critical protocol extension
principles.

The above provisioned interactivity has dramatic
consequences on applications. The proposed

interactivity opens up a new horizon in implementing
advanced optimization in the network. Armed with the
knowledge of the network states, much more
sophisticated and efficient solutions to various network
impairment problems can now be easily implemented-
which are not otherwise possible from classical closed
network layer. Below we now show one such case
where the application can ensure optimum traffic
control to the point that it can ensure even delay
guarantee.

4 Symbiosis Throttling Model
The key to the system is the intermediate event gluing
mechanism—or as we call it symbiosis throttling. It
performs the key task of dynamically specifying the
target rate for the application based on the event
notification interrupt. The idea is to accept the event
feedback provided by the underlying interactive
transport layer, and generate a corresponding rate
feedback for rate formation capable applications. This
feedback is estimated in a way that ensures transport
service with applications specified delay conformation
over the otherwise classic transport service.

The main idea is that when a time-out event (1=ξ)
occurs in the transport, we let the subscriber rate retract
to a smaller rate. We call this retraction state as frugal
state. We now show how to optimally design the frugal
state’s retraction point.

4.1 Analysis of Symbiotic Throttling
Let g(t) be the generation function denoting the data
rate at which the rate formation capable application
produces data as a function of time. Let w(t) is the
bandwidth function provided by the transport channel
over which, the application sends the data. Figure 5
explains the model.

During normal operation w(t) ≥ g(t). When a loss event
is detected (e.g., timeout) the transport bandwidth
retracts to some smaller effective value due to window
resizing. The underlying cause might be a packet loss
or a congestive delay deep inside network. In either
case, the sender transport buffer builds up and results
in increased communication delay. In response to the
loss event, we let the subscriber adjust its generation
rate to a lower generation state (we call this state the
frugal bandwidth state). The normal operation is
however by a satisfied bandwidth state. In any practical
feedback system there is also always a reaction delay in
the feedback loop. Let τ be the reaction time needed by
the subscriber process to react and adjust its rate. Given
the above model, the particular design problem we
address is the following:

Given the bandwidth function w(t), the generation
function g(t), the satisfied state bandwidth (H), and the

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 5

upper bound on the acceptable data delivery delay
(dQ), determine the best possible frugal state
(generation rate and its duration) for which the bound
dQ can be ensured.

Here the delay bound dQ is the maximum delivery
delay an application can sustain between generation
endpoint and delivery endpoint of the application layer.

We now further define two additional concepts
important for the derivation to be presented.

4.2 Critical-delay-point inequality
Assuming the loss is detected at time tloss. After the loss
assume it takes tequal time for the transport system to
again equalize the transport bandwidth with the frugal
state generation rate of the subscriber. This is the point
where then window rate increases and again equals the
generation rate i.e. w(t)= g(t). We call this point the
even-point.

Since the generation rate is larger than the transport
rate before the even-point is reached, therefore the
transport buffer will build up until the even-point is
reached. The buildup will again begin to gradually
decrease after the even-point. Thus the bytes entering
the buffer exactly at the even-point will face maximum
delay. Let this time be called critical-delay-point tcritical.
Thus, if the transport buffer already has Q bytes in it
(before moving to the frugal state), the buffer size at
even-point is given by the left hand side of equation—
(1a). Let d be the maximum acceptable delay, then the
following inequality must hold. We name it critical-
delay-point constraint:

∫ ∫ ⋅≤⋅−+
equal

loss

critical

equal

t

t

t

t
dttwdttwtgQ)()()(),0max(

Or, ∫ ∫
+

⋅≤⋅+ equal

loss

equal

loss

t

t

dt

t
dttwdttgQ

)(
)()(),0max(--(1a)

4.3 Recovery-Point Inequality
The bytes entering the transport buffer after the even-
point will face lesser but still non-zero delay. This data
too will be entering into the buffer which will be quite
full. These additional bytes, those generated between
the even-point and the critical-delay-point, will still
populate the buffer. Therefore our ultimate goal is to
take the buffer into pre-event state before returning to
normal generation. Thus, the subscriber system should
still continue to operate at somewhat less than satisfied
state even after even-point. This extended frugality will
allow remaining buffer buildup to dissipate—
completely erasing the effect of the original timeout
event. We define this instance of time, when the entire
buildup will dissipate and return to pre-event state as
the full-recovery-point. Let’s call it the recovery time

trecovery, then the following second inequality in
equation—(1b) must hold. We call it full recovery-
point constraint.

∫ ∫ ⋅≤⋅+ eryre

loss

eryre

loss

t

t

t

t
dttwdttgQ cov cov)()(),0max(

--(1b)

4.4 Frugal State Determination
The two inequalities respectively can provide a general
solution for the level and duration of the frugal state for
any general transport bandwidth and generation
function. It can also predict the corresponding recovery
time. Below, we solve specifically for the case where
the iTCP transport control is similar to TCP (binary-
back-off and additive-increase) and a piecewise step
g(t). For simplicity, we assume that when a loss event
is detected the window function decelerates to zero
(i.e., w(tloss)=0). We first solve for a fast reacting
system, where the reaction time is very small and let
the buildup before subscriber reaction is Q. Let g(t) is a
piece-wise step function. We further assume that the
post-fault w(t) is a linear function with bandwidth
acceleration m.

Let d0 is the maximum buffer delay tolerable by the
application data. Given a maximum propagation delay
limit TP, and bandwidth w(t), we can say that dQ=
d+TP+(1/w(t)) where d is the total delay faced by the
byte entering at critical-delay-point. Since, typically
w(t)>>1, then d can be approximated by d = dQ - TP.
Let T be the time it takes the system to reach the even-
point (i.e., T = tequal – tloss). The left hand side is the
sum of the buildup before the TCP reacted and the data
that arrived after the reaction until the even-point. The
right hand side is the total data released until even-
point from TCP. Then critical buffer equality (1a) can
be expanded into:

022

][
2
1

22

22

≤
⋅

+−−

+⋅⋅≤+

m
QdTdT

dTmmTQ
--(2)

It solves to:

m
QddT 22 2 −±= --(3)

Only positive real solutions are practical. For any given
system arbitrary delay bound cannot be met. In that
case both the solutions are imaginary. The model can
now be used to determine the limit on the maximum
acceptable delay. For the real solution the minimum
delay requirement cannot be smaller than:

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 6

m
Qd ≥min

 --(4)

T can have two solutions. Both solutions are positive if:

m
Qd 2

≤ --(5)

Otherwise, only one solution is positive. From T, we
can determine the frugal state bandwidth of the
generator function. It should be stepped down to:











−±== 2

221
md

QmdmTh --(6a)

Out of the two solutions, the best possible frugal state
(the one which allows higher transmission rate in the
frugal state) is:











−+==

2

2
21

md
Q

mdmThbest
 --(6b)

And the other solution is:









−−== 2

221
md

QmdmThother
 --(6c)

The second solution, when exists, provides a second
possible frugal state with lower generation rate. If this
solution is taken, the data-generation allowance at
frugal state will be lower. However, it will result in
faster recovery.

The next question we ask is how long the system
should stay in frugal state. We first derive a lower
bound. This is given by the critical recovery time:









−±== 2

22122
md

QdTTcritical
 --(7)

For the special case, when, the initial buildup (or
reaction time) is zero, the corresponding height and
duration of the frugal state is:

)21(2

)21(

+=

+=

dT

mdh

critical

best
--(8)

For step g(t), between the critical-point and recovery-
point the system continues to be in frugal state
accelerating the recovery. Corresponding recovery
time is the complete duration of the frugal state. It can
be determined by solving equality—(2), and is given
by:









++= 2cov

211
h
Qm

m
hT eryre

 --(9)

For the general case, when there is a buffer buildup due
to the reaction delay=τ, the buildup can be estimated
from the satisfied state generation rate and the reaction
delay. Let H be the bandwidth satisfied state generation
rate, when τ is small, Q can be approximated by:

)
2

(ττ mHQ −= --(10)

The slop m can be approximated from the effective
RTT and the segment size (up to the current threshold
TCP window grows exponentially).

RTT
I

I
B

I
BRTT

B
m

channelchannel

channel 2

22
log2

≈






 +

= --(11)

Here Bchannel is the target channel bandwidth, I is the
increment step or segment size and RTT is the round
trip delay estimate used by TCP to resize its window.

For symbiosis with the underlying transport protocol,
each time a retransmission timeout event (at t=0),
reported the frugal state bandwidth is determined as
following.

eryreTtattw

when
dm
Qmd

twhentwtg

cov

2

)(

1
.

221

0,0)()(

>=

=









−+=

===

ξ

ξ

--(12)

5 Symbiosis Mechanism: The T-ware
The important task of gluing between the transport
layer and the application unit (MPEG-2 rate
transcoder) is finally performed by the symbiosis unit
(T-ware). T-ware essentially executes the throttling
model. It estimates the parameters required to execute
the model by probing iTCP as needed and finally it
provides the application the rate parameter as it
requires operating in symbiosis. Below we describe its
parameter estimation process and invocation
operations.

5.1 Estimation of the Model Parameters
from iTCP States

To be able to use the symbiosis throttling model
described above, we now show how the model
parameters can be estimated from the TCP state and
event times made accessible by the iTCP. Namely, we
want to find τ, H, RTT, and I from the TCP internal
state variables now made available by iTCP.

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 7

5.1.1 Reaction Delay (τ)

The reaction time τ was approximated as following:

TCPrateEvenTtimesponseTime uutt ++−=)(Reτ --(13a)

EventTime is when the signal handler was invoked.
The quantity uTCP is a constant approximating the time
taken by iTCP’s kernel signaling. We assume uTCP =0.
Thus EventTime is used here as an approximation of
the real time when the event has occurred deep in the
TCP layer. ResponseTime approximates the time of
the real rate reduction (i.e. when the calculated hbest is
saved to “rate.par” file). Quantity urate is the
estimate of the rate control systems reaction time after
receiving the new rate, we also assume urate=0.

5.1.2 Round Trip Time (RTT)

RTT is directly returned by TCP from its state variable
TCPstate->t_rtttime. TCP implementation
uses the following process to measures round trip time
(RTT) and retransmission timer out (RTO). First, TCP
measures the RTT between sending a byte with a given
sequence number and receiving an acknowledgment
that covers that sequence number (M denotes the
measured RTT). Afterwards, TCP updates a smoothed
RTT estimator R using the low-pass filter:

MRR).1(. αα −+← --(13b)

Where α is a smoothing factor with a recommended
value of 0.9. The smoothed RTT is updated every time
a new measurement M is made. This means that 90%
of each new estimate R is from the previous estimate
and 10% is from the new measurement M. TCP then
calculates a new retransmission timer out value (RTO)
based on the mean and variance of the RTT
measurement. The technique was proposed by
Jacobson [5]. He used the mean deviation as a good
approximation of the standard deviation since it is
easier to compute. In each RTT measurement M, the
following calculations are made:

DARTO
DErrhDD

gErrAA
AMErr

gain

4
)(

+=

−+←

+←
−=

--(13c)

Where A is the smoothed RTT (an estimator of the
average) and D is the smoothed mean deviation. Err is
the difference between the measured value just
obtained and the current RTT estimator. Both A and D
are used to calculate the next RTO. The gain g is for the

average and is set to 1/8. The gain for the deviation is
hgain and is set to 1/4.

5.1.3 Maximum Segment Size (I)

RTT is directly returned by TCP from its state variable
TCPstate->t_maxseg. Maximum segment size
MSS (we called it I in our model), is the largest
‘chunk’ of data that TCP can send to the other end.
When a connection is established, each end has the
option to announce the MSS it is willing to receive.
When TCP sends a SYN segment, it can send an MSS
value up to the outgoing interface’s MTU, minus the
size of the fixed TCP and IP headers. In our
experiment, TCP chose MSS of 1460 bytes.

5.1.4 Satisfied State Bandwidth (H)

H can be calculated by finding the ratio: number of
bytes transmitted so far over elapsed time since the
video has started. This is estimated from two TCP state
variables (t_rtseq and t_iss) and two local
measurements:

eventTimeTimevideoStart uu
isstTCPstatertseqtTCPstateH

−
×→−→

=
8)__(

The difference:
isstTCPstatertseqtTCPstate __ →−→

Between the state variables gives how many bytes have
been transmitted so far. We multiply it by eight to
convert it to bits since all our calculations will be in
bit/second units. The uvideoStartTime is the time when the
video started; it was saved in a file by the encoder prior
to sending the first frame.
5.2 T-ware Implementation
The Symbiosis Throttling of equation 12 is actually
implemented in the loss event handler or the T-ware
module. Basically, we need to calculate hbest and
Trecovery every time the T-ware is invoked.

The role of the signal handler was merely to catch the
signal from the kernel and invoke the appropriate T-
ware. To simplify things we let the encoder subscribe
with the “retransmit timer out” event only. Figure 6a
outlines a sketch of the signal handler code. After
catching the SIGIO signal, it needs to know which
socket generated the event (line 5) then it probes the
socket to get the event number and the event handler
name (line 6). Once retrieved, it forks a new child and
executes the appropriate T-ware for the event type
(lines 8-10). It passes to the T-ware the time when the
event occurred and the socket id. Once activated, the T-
ware ─shown in figure 6b─will first probe the socket
to retrieve the following parameters from TCP:

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 8

t_rtttime (round trip time), iss (initial send
sequence number), t_rtseq (sequence number
being timed), and t_maxseg (maximum segment
size). The T-ware then calculates the satisfied state
bandwidth generation rate H, the reaction delay τ as
explained before. Afterwards, the handler calculates m,
Q, hbest, and Trecovery in a straightforward manner (lines
8-11). In line 13, it stores the reduced rate hbest in the
“rate.par” file which will be noticed immediately
by the symbiotic encoder. Finally, the event handler
starts a timer for recovery. When the timer reaches
Trecovery, the recovery T-ware kicks-in and returns the
encoder bit rate to the normal rate. The recovery T-
ware is outlined in figure 6c.

6 Experiment and Performance Analysis
The results presented here are not simulation. We used
a real implementation of iTCP and the MPEG-2
Symbiotic Transcoder. The results presented came
from its live performance experiment conducted over
the real video delivery sessions over the Internet to the
worldwide sites. Before presenting our results first we
will describe the testbed and the setup.

6.1 The ABone Testbed
We wanted to run the experiment on the real Internet
environment. This required running the symbiotic
transcoder, a sender equipped with iTCP transport
protocol, and a set of players on remote hosts around
the world. We could have done this manually by
conventional methods to reach a number of remote
nodes worldwide. But this would have required
extensive overhead to setup the testbed and maintain it.
Furthermore, this will not be flexible or practical if we
wanted to switch to a new set of remote nodes.
Therefore, we decided to use the ABone. The ABone,
developed under the DARPA ANI program forms a
virtual network infrastructure on which a growing set
of active network components can be tested and
experimentally deployed. ABone is an operational
network and provides an Internet wide network of
routing as well as processing capable nodes. Providers
can contribute confederation of computing capable
nodes. Independent application involving multiple trust
domains can be securely launched and executed. It also
specifically allows new transport protocol components
to be remotely deployed. ABone nodes are available
from Europe, Asia and North America. Individual
nodes are contributed and managed locally and
independently by the contributing site administrators.
However, the administrators do not have to manage the
remote users. Researchers can remotely install and
execute programmed components on any collection of
these nodes via the ABone backbone management and
control backplane being a part of a centralized user

pool. The codes are distributed via an enlisted set of
Trusted Code Servers (TCS), which help
authenticating them prior to distribution. The security
domains are handled by the backplane control system.
The backplane is being maintained by the ABone
Coordination Center (ABOCC) at ISI at the University
of Southern California. ABone status can be monitored
live from the ABOCC web site [3]. In addition to the
iTCP machine we have a cluster of 10 registered
ABone nodes in our lab at Kent State University (mk00
- mk09 .maunakea.medianet.kent. edu). Four of these
nodes run on FreeBSD and the rest run on Linux. At
the time of our experiment (Nov. 2003), there were 24
Linux nodes, 5 Solaris nodes, and 12 FreeBSD nodes
registered on the ABone.

For our experiment we simply sent our video player to
one of the ABone’s trusted code server at
(http://bro.isi.edu/KENT). Then we configured and
registered our iTCP machine
(kawai.medianet.kent.edu) as a primary node on the
ABone to run iTCP and the symbiotic transcoder. The
server remained in a traditional (non active) node. The
ABone allowed the automatic loading of the sessions
on designated machines worldwide.

6.2 Experiment Setup
This experiment describes the performance of an
MPEG-2 ISO/IEC13818-2 (176x120) resolution video
encoded with base frame rate of 2 Mbps at main
profile.

Figure 7 illustrates deployment setup. The video server
runs on a classic TCP machine (manoa) and feeds the
video stream into the transcoder, which runs on the
iTCP active node (kawai). To create some forced
congestion in the experiment we also run a congestion
injector program on a first-mile active gateway router
(lahaina). The injector creates congestion bursts.
Figure 8 shows the congestion injector. It allows the
duration, and the interval between bursts to be
programmed for three consecutive bursts. During a
congestion burst the router will simply disrupt its
routing table by removing the entry that leads to the
player machine. When the burst time is over, the router
restores the routing table back to normal. In our
experiment, we used 3 three-second bursts at 10 second
intervals. A three-second burst usually triggers 1 to 2
retransmit timer out events depending on the player’s
location. We ran the players on selected remote ABone
node. We repeated the experiment on four ABone
nodes, two in the US and two in Europe. Some general
network conditions observed of the four target nodes
are shown in table 2. The player and transcoder units
were enhanced to collect detail frame arrival, and
delivery measurements.

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 9

6.3 Impact on Video Frame Delay
For a detailed comparison we have performed several
sets of experiment. These are: iOPT, iEXP, iOFF,
and Classic modes.

• In the iOPT (optimal backoff) mode, we activated
the throttling model described above to calculate hbest
and Trecovery with every loss event. We challenged the
system to provide the frames at guaranteed d=6, 4,
and 2 seconds.

• As a base case we also repeated the experiment with
the same congestion schedule in classical mode
where the interactive and symbiotic rate adaptation
features were turned-off and the entire system ran in
classical TCP mode. We call it Classic mode.

• For comparison we also included the case of iEXP
used in our previous work to demonstrate the
effectiveness of iTCP. It is a non-optimized simple
heuristics-based symbiosis which performs a lazy
binary back-off scheme for the generation rate. The
method adapts but it can not provide QoS guarantee
as with the throttling model. Detail of this simple
scheme is in [9]. With the iEXP (exponential
backoff) mode, we used a predetermined reduction
ratio (α = 0.35) and multiplied that with current bit
rate to calculate the frugal state bit rate, we also used
a fixed recovery time of 4.0 seconds.

• We also repeated the experiments in another mode
called iOFF for overhead estimation. The mode is
similar to classic TCP. No symbiosis is performed.
But the event subscription mechanism remains
active. This will be explained later.

In all the iTCP enabled runs (iOPT, iEXP and iOFF),
the transcoder subscribes with iTCP for the
retransmission timer out event.

In the experiment, we took frame-wise detail event
trace of the first 750 frames of the video at both
sending and receiving ends. For a given discard
threshold time in the receiving end we also traced
which frame was successfully received or not at the
MPEG-2 player. As explained earlier, we traced four
transport aware cases (iOPT with three values of delay
tolerance d=2, 4, and 6, and iEXP) and two transport
unaware cases (iOFF and Classic) please, return to
table 3 for details on the four running modes.

Now we show the dramatic impact of iTCP’s
interactivity based symbiosis. In figure 9 we plot the
delay experienced by the video frames in terms of
frame arrival time at the player for the four modes
mentioned above. In addition, we also show the ideal
expected frame delivery time—Expected in the

figure—based on linear generation rate. As can be seen
iTCP outperformed classical TCP; after each
congestion burst, the unaware cases (Classic and
iOFF) continuously fell behind. The delay built up and
it could hardly recover. This is evident by the step
jumps in the delay line. The TCP aware cases also
suffered some step buildup, but it was much smaller
and it could recover after few seconds due to the rate
retraction.

In table 4 we present the frame delay and acceptance
ratio comparison for the whole stream. The table shows
the performance for three choices of delay tolerance
d=2, 4, and 6 seconds. For each value of d we traced
the four running modes (iOPT, iEXP, iOFF, and
Classic) and recorded the average delay in seconds
that each frame has experienced and the frame
acceptance ratio at the receiving player ABone nodes.
It can be clearly noticed that iTCP/aware modes
achieved low delays and high acceptance percentages
while the unaware/classic modes suffered from higher
delays and lower acceptance percentages. Clearly
iTCP’s T-ware mechanism allowed the application to
use sophisticated optimization techniques to optimally
control the temporal qualities of its traffic.

6.4 Symbiotic Rate Control
In the next set of experiments we will present the
internals of the symbiosis mechanism in more detail.
Figure 10 depicts the symbiotic frame rate transcoding
that occurred due to the joint rate specification at the
rate control logic at the symbiosis unit and in the
transcoder for each frame. In the figure we show four
plots for the four target ABone nodes. Each plot
represents the iOPT mode run for the delay tolerance
case d=4. Table 6 presents the actual values of hbest and
Trecovery that controlled the frugal mode operation as
calculated by the symbiosis controller T-ware after
being activated by each one of the three loss events
created in the experiments.

In each plot of figure 10 we see the target bit rate and
the retraction ratio as specified by the symbiosis
controller, and the resulting outgoing actual frame rate
generated by the transcoder. The timer out events (in
this case there are 3 timeout events) reported by iTCP
resulted in the symbiosis unit to modify the rate
according to the optimal backoff symbiotic rule
(equation-12). Though, the precise MPEG-2 generation
rate varied widely from frame to frame to
accommodate the frame type, but the general trend
followed the specified target. Table 5 provides the
overall stream compression due to symbiotic
adaptation for the entire stream (iOPT and iEXP
cases), as compared to the normal non-symbiotic cases
(iOFF and Classic cases). In the Classic and

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 10

iOFF cases, there were no adaptation (thus retraction
=1). Compared to this both iOPT and iEXP reduced
the overall delivered bits about 83-95%.

However, it is interesting to note that iEXP without its
optimization logic, operated more aggressively and
compressed more (for example iEXPs’ 85% vs.
iOPTs’ 91% in d=2). In comparison iOPT operated
more confidently (reduced less bits), yet it achieved
higher temporal quality (average delay is 2.6 sec vs.
0.5 sec for same cases).

6.5 Observation at Application Level:
In the above experiments we illustrated how the
symbiosis mechanism worked from the video transport
protocol (MPEG-2) and the network transport protocol
TCP layers beneath it. In this plot we will illustrate
how this mechanism appears from the very top—at the
application layer itself. An application receives and
delivers uncompressed frames. The performance metric
this end-system uses is the temporal and spatial quality
difference between the transmitted and the reproduced
uncompressed video frames. The underlying MPEG-2
transport protocol and the network layer TCP together
provides the transport. The specific compression,
windowing etc. and other detail mechanisms are
external techniques to the end systems.

In figure 11 each frame is plotted as a point in the
video quality/frame delay plane. The figure shows four
plots for the four ABone nodes, and each plot
represents three running modes (iOPT with d=4,
iEXP, and Classic). As can be seen from the region
of the three QoS distributions, in TCP-classic, although
frames have been generated with SNR quality ranging
between 18-40 dB, but many of these frames suffered
long delay and were lost in transport. In contrast, the
interactive iOPT mode can deliver all the frames with
guaranteed delay when the bulk of the frames had 10-
32 dB quality.

It is interesting to note that the iEXP mode achieved
the same tradeoff, but since it took a non-optimized
and thus more aggressive approach in symbiotic rate
reduction the quality suffered more and recorded
values as low as 7 dB. Fundamentally, what iTCP has
offered is a qualitatively (as opposed to the quantitative
improvements offered by any unaware solution) new
empowering mechanism, where the catastrophic frame
delay can be traded off for acceptable reduction in SNR
quality.

6.6 Interactivity Overhead
The dramatic advantage in application level
performance came at a cost since the event tracking
mechanism added some overhead. We were also

curious to find out the overhead of the event
mechanism. To track the overhead, we recorded the
total data transmission time under the three conditions
(iOPT, iOFF, and Classic). The left most bar of
figure 12 plots the transport time for the optimal
interactive mode where we activate both event delivery
and symbiosis. To observe the overhead of the event
service, in the iOFF mode we used the iTCP
implementation, however, we stopped the symbiotic
reduction so the transport layer handled the same
amount of data. As expected the overall transmission
time increased in all three cases. However, in the third
column (Classic mode) run we turned off the
interactive service altogether and thus we saved its
overhead and lost its benefit. As can be seen, the slight
increase in the event delivery overhead was vastly
offset by the application level technique. The
advantage the application gained from the event
delivery was much bigger than the overhead.

7 Conclusions
In this paper, we have presented a case of video rate
symbiosis mechanism in line with current advances in
TCP friendly systems. We have presented the case
through a clean ‘interactive’ generalization of the
classical TCP, and a novel implementation of a
symbiotic MPEG-2 transcoder. We collected the
results of our experiment by running real video session
experiments on the Internet on the ABone testbed. In
the previous discussion we have demonstrated the case
of quality conformant congestion control for elastic
video traffic. The approach exposed the overall
advantage of network ‘friendly’ applications. However,
it also departs significantly from the mainstream TCP
friendly systems that have been suggested recently in
two senses; First, it does not add any new major
component in the network software structure. One of
the principal strength of the proposed scheme is its
relative simplicity at the network layers, yet, its
effectiveness. It only expects some form of
interactivity directly from the concerned network
protocol as a general interface feature. Thus, there is no
expectation of (or conflict with) additional services
(such as combined congestion control from multiple
applications). Secondly, the applications do not have to
be designed dependent on other auxiliary indirect
probing tools or network utilities, nor it excludes their
use when available. Current TCP dynamics are highly
optimized for various network dynamics such as fair
queuing and congestion control scenarios. The
proposed interactivity does not alter any dynamics in
the network side and thus those optimizations. Its
actions are directed completely at application side.

Nevertheless, the approach adds lesser but yet some
complexity in the network layer. The augmentation of

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 11

the notification feature increases the normal mode
delay of TCP slightly. The actual cost depends on the
intensity of the binding between events and T-wares.
However, as shown by the results with a prudent
design the impact on the network level transfer rate
(based on lower layer measurement), if any, can be
widely surpassed by the gain made at the application
layer. However, an interesting safeguard of this scheme
is that a wrong design will only affect the application at
fault and will have no negative effect on the network
dynamics. However, the proposed interactivity is not
an alternate to other network level schemes, rather is a
complimentary scheme. Some of the information
measured by the auxiliary tools suggested by other
approaches might be already available (or are being
estimated/tracked) at lower layers anyway. At least this
is the case with TCP congestion. The direct protocol
interactivity we propose thus seems to be the logical
path that can avoid potential duplication of efforts.

There are profound and fundamental advantages of
event based interactivity. The proposed interactivity
opens up a new horizon in implementing advanced
adaptive optimization for applications and middleware.
The event based instant knowledge of the network
states, enables sophisticated and efficient solutions to
various network impairment problems—which cannot
be otherwise realized via classical closed network layer
design.

It is further interesting to note that besides enabling a
new class of adaptive applications, the proposed
interactivity can have important implication on
network layers as well even when mediated by
application level T-ware components. Indeed, it can
play a critical role in cross-layer optimization. We have
demonstrated such optimization where, the slow
handoff of Mobile IP (MIP) can be substituted by an
infrastructure-free end-to-end mobility solution called
IPMN [20]. The scheme uses event-based interaction
between several network layers mediated by T-wares.
It offers blazingly fast event based handoff and much
simplified transport (no tunneling delay) than MIP.

We have also recently demonstrated that interactivity
can even be used for protocol extension. Researchers
are regularly finding numerous otherwise excellent
extensions and improvements to existing protocols.
Unfortunately, in networking there is hardly any
deployment path especially for the case of lower level
protocols. We have recently shown how two such well
known extensions—which did not find realization—
WTCP and SNOOP can be easily realized at the
application layer via protocol interactivity [19]. Again,
we would like to emphasize that even the original TCP
protocol called for interactivity (RFC007, RFC793).
The proposed work thus can be considered as a

renewed investigation to this overlooked but probably
one of the most profound features of TCP/IP
networking that original designers envisioned.

8 References
[1] Andersen D., Bansal D., Curtis D., Seshan S., and

Balakrishnan H., “System Support for Bandwidth
Management and Content Adaptation in Internet
Applications,” Proc. of OSDI’00, Oct. 2000, San
Diego, CA.

[2] Balakrishnan H., Rahul H., and Seshan S., “An
Integrated Congestion Management Architecture for
Internet Hosts,” Proc. of ACM SIGCOMM,
Cambridge, MA, Sep 1999. pp.175-187.

[3] Berson S., Braden B., and Ricciulli L., “Introduction to
the ABone,” Feb. 2002, available at
http://www.isi.edu/abone/DOCUMENTS/ABarch/.

[4] Briceño H., Gortler S. and McMillan L., “NAIVE--
network aware Internet video encoding,” Proc. of the
7th ACM International Conference on Multimedia,
Oct. 1999, Orlando, FL, pp. 251-260.

[5] Jacobson V. and Michael J. Karels, “Congestion
Avoidance and Control,” Computer Communication
Review, vol. 18, no. 4, pp. 314-329, Aug. 1988.

[6] Jacobson V., “Modified TCP Congestion Avoidance
Algorithm,” end2end-interest mailing list, April 1990.

[7] Ke J. and Williamson C., “Towards a Rate-Based TCP
Protocol for the Web,” Proc. of the 8th Int. Symposium
on Modeling, Analysis and Simulation of Computer
and Telecomm. Systems, 2000.

[8] Khan J., Zaghal R., and Gu Q., “Rate Control in an
MPEG-2 Video Rate Transcoder For Transport
Feedback based Quality-Rate Tradeoff,” PV2002,
Pittsburgh, PA, April 2002.

[9] Khan J., Zaghal R., and Gu Q., “Dynamic QoS
Adaptation for Time Sensitive Traffic with
Transientware,” IASTED WOC'03, Banff, Canada,
July 2003.

[10] Khan J. and Zaghal R., “Event Model and Application
Programming Interface of TCP Interactive,” Technical
Report ‘TR2003-02-02’, Feb. 2003.

[11] Khan J. and Patel D., “Extreme Rate Transcoding for
Dynamic Video Rate Adaptation,” 3rd Int. Conference
on Wireless and Optical Communication WOC 2003,
Banff, Canada, July 2003, pp. 410-415.

[12] Khan J. and Gu Q., “Network Aware Symbiotic Video
Transcoding for Instream Rate Adaptation on
Interactive Transport Control,” IEEE NCA’01, Oct.
2001, Cambridge, MA, pp.201-213.

[13] Pradhan P., Chiueh T. and Neogi A., “Aggregate TCP
Congestion Control Using Multiple Network Probing,”
Proc. of the 20th International Conference on
Distributed Computing Systems, ICDCS 2000.

[14] Raman S., “A Framework for Interactive Multicast
Data Transport in the Internet,” Ph.D. thesis, UC-

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 12

Berkeley, May 2000.
[15] Rejaie R., Handley M., and Estrin D., “Architectural

Considerations for Playback of Quality Adaptive
Video over the Internet,” Proc. of the IEEE ICON
2000.

[16] Sisalem D. and Wolisz A., “Towards TCP-Friendly
Adaptive Multimedia Applications Based on RTP,”
Proc. of the 4th IEEE Symposium on Computers and
Communications, 1998.

[17] Stevens W. R., “TCP/IP Illustrated, Volume 1: The
Protocols,” Addison-Wesley, 1994.

[18] Wolfinger B., “On the potential of FEC algorithms in
building fault-tolerant distributed applications to
support high QoS video communications,” Proc. of the
sixteenth annual ACM symposium on principles of
distributed computing, 1997, pp. 129-138.

[19] Khan J. and Zaghal R., “Interactive Transparent
Networking-Modeling Examples of Snoop and WTCP
Protocols,” Journal of Computer Communications,
Spring 2005, Elsevier, http://www.sciencedirect.com/

[20] Zaghal R., Davu S., and Khan J., “An Connection
Oriented Mobility – Performance Analysis with Voice
Traffic,” IEEE Wireless and Optical Communications,
WiOPT05, 3rd IEEE Intl. Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless
Networks, Riva Del Grande, Italy, April, 2005,
pp.219-228.

[21] Floyd S., Handley M., Padhye J., and Widmer J.,
“Equation-Based Congestion Control for Unicast
Applications,” August 2000. SIGCOMM 2000.

[22] Handley M., Floyd S., Pahdye J., and Widmer J.,
“TCP Friendly Rate Control (TFRC): Protocol
Specification,” RFC 3448, Proposed Standard, January
2003.

[23] Ahmed T., Mehaoua A., Boutaba R., and Iraqi Y.,
“Adaptive Packet Video Streaming Over IP Networks:
A Cross-Layer Approach,” IEEE Journal on Selected
Areas in Communications, Vol.23, no.2, February,
2005, pp.385-401.

[24] Wang R., Yamada K., Sanadidi M. Y., and Gerla M.,
“TCP with sender-side intelligence to handle dynamic,
large, leaky pipes,” IEEE Journal on Selected Areas in
Communications, 23(2):235-248, 2005.

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 13

Figure 2. Fast Retransmit/Fast Recovery (FRFR) mechanism.

initially, cwnd = segmentSize (1 segment);
ssthresh = 65535 bytes;
win_size = min (cwnd, snd_wnd);
When congestion occurs, do:

ssthresh = max(win_size/2, 2);
if congestion was due to timeout

cwnd = segmentSize;
for every ACK received:

if (cwnd <= ssthresh)
 cwnd += 1;
else
 cwnd += 1/cwnd;

Figure 1. Slow Start/Congestion Avoidance (SSCA)
mechanism.

When a 3rd duplicate ACK is received:
 ssthresh = max(2, min(cwnd, snd_wnd)/2);
 Retransmit missing segment;
 cwnd = ssthresh + 3;

Each time another duplicate ACK arrives, do:
 cwnd = cwnd + segment_size;
 transmit a new segment;

When a new ACK arrives, do:
 cwnd = ssthresh;

Figure 3. Effective bandwidth changes due to TCP congestion
control internal events.

E
ffective

bandw
idth

time

w
in_size

Slow start threshold (ssthresh)

(a)

evt(1)

evt(2)

evt(3)

Slow start threshold

(b) one RTT

evt(4)

evt(5)
evt(6)

E
ffective

bandw
idth

w
in_size

time

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 14

Figure 4. The iTCP extension and API.

6a

3b

user
space

1

7

TCP kernel

2

4a

Event
Information

Connection
State

Application

Probing
API

Subscription
API

T-ware
(2)

TCP
Connection

system

Kernel

5

Signal Handler

4b 6b

T-ware
(1)

T-ware
(n)

Event
Monitor

Socket
API

Figure 4. The iTCP extension and API.

6a

3b

user
space

1

7

TCP kernel

2

4a

Event
Information

Connection
State

Application

Probing
API

Subscription
API

T-ware
(2)

TCP
Connection

system

Kernel

5

Signal Handler

4b 6b

T-ware
(1)

T-ware
(n)

Event
Monitor

Socket
API 3a

Figure 5. Symbiosis throttling model.

tloss tactual tequal tcritical

Relaxation period (λ)

Critical delay period (d)

Frugal state rate (h)

Reaction delay (τ)

trecovery

Generator Function g(t)

Window Function w(t)

time

Satisfied state rate (H)

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 15

Figure 6. Pseudo code of the Signal handler, the Event handler,
and the Recovery handler.

1: Loss-T-ware(socket s, eventTime){
2: struct connState *TCPstate;
3: probeSocket (s, TCPState);
4: fscanf(timeFile, “%ld”, videoStartTime);
5: H = (TCPState->t_rtseq – TCPState->t_iss)*8
 / (videoStartTime - eventTime);
6: gettimeofday(respTime);
7: responceDelay = respTime - eventTime;
8: m = 2*(TCPState->t_maxseg)*
 8 / TCPState->t_rtttime;
9: B=responceDelay * (H –(m*responceDelay)/2);
10: h_best = m*d* (1 + sqrt(2-(2*M/m*d)));
11: T_recovery = (h_best/m) *
 (1 + sqrt(1+(2*B*M)/(h*h)));
12: ratefile = fopen(“rate.par”, “w”);
13: fwrite(h_best, ratefile);
14: StartRecoverTimer();
15: }//end LossTware
16: }

(b)

1: Recovery-T-ware(signum){
2: if (signum == SIGALRM){
3: waitTimecount++;
4: if (waitTimecount && !rateOK &&
 (waitTime>T_recovery)){
5: ratefile = fopen(“rate.par”, “w”);
6: fwrite(originalRate, ratefile);
7: rateoK = 1;
8: }//end if
9: }//end if
10: }//end RecoveryTware

(c)

1: SignalHandler(signum){
2: struct evtSubInfo *handInfo;
3: if (signum == SIGIO){
4: gettimeofday(eventTime);
5: s = GetSockid();
6: ProbeEvtInfo(s, handInfo);
7: if (!(child = fork())){
8: execl(handInfo->handler, s, eventTime);
9: exit(0);
10: }//end if
11: }//end if
12: }//end SignalHandler

(a)

Figure 7. Experiment setup. The congestion injector creates
consecutive timed bursts of congestion.

Transcoder-
ABone node

XCODER

iTCP

Router

TCP-classic

Congestion
Injector

Player-
ABone node

TCP-classic

PLAYER

Internet

Server
SERVER

TCP-classic

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 16

Figure 8. Congestion Injector mechanism

int bursts = 3;
int burstTime[]={3, 3, 3};
int interBurstTime[]={10, 10, 0};
sleep(10);
for (i=0; i<bursts; i++){
 remove entry from routing table;
 sleep(burstTime[i]);
 return entry to routing table;
 sleep(interBurstTime);
}

dad.isi.edu

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

abone-01.cs.princeton.edu

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

ave.willab.fi

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

zzz.abone.supermedia.pl

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701

Figure 9. Frame arrival delay on the four ABone nodes.

 iOPT, d=2 iOPT, d=4 iOPT, d=6 iEXP Classic Expected iOFF

Frame number Frame number

Frame number Frame number

Fram
e arrival tim

e (sec)
Fram

e arrival tim
e (sec)

Fram
e arrival tim

e (sec)
Fram

e arrival tim
e (sec)

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 17

abone-01.cs.princeton.edu

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

dad.isi.edu

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

ave.willab.fi

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

zzz.abone.supermedia.pl

0

40000

80000

120000

160000

200000

1 101 201 301 401 501 601 701

Frame number Frame number

Frame number Frame number
B

its per fram
e

B
its per fram

e

B
its per fram

e
B

its per fram
e

Figure 10. Symbiotic Rate Reduction on the four ABone nodes. The plot shows the case of ‘iOPT’ mode with delay tolerance d=4.

 Event Target Bits Actual Bits

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 18

abone-01.cs.princeton.edu

0

10

20

30

40

50

0 20 40 60 80

dad.isi.edu

0

10

20

30

40

50

0 20 40 60 80

ave.willab.fi

0

10

20

30

40

50

0 20 40 60 80

zzz.abone.supermedia.pl

0

10

20

30

40

50

0 20 40 60 80

Frame arrival time Frame arrival time

SN
R

 quality (y-block)

Figure 11. Frame Arrival time and frame SNR quality tradeoff for three running modes. X-axis frame arrival time, y-axis SNR
quality (Y-block).

 iOFF iEXP iOPT, d=4

Frame arrival time Frame arrival time

SN
R

 quality (y-block)

SN
R

 quality (y-block)
SN

R
 quality (y-block)

Figure 12. Overhead of the interactivity service.

0
10
20
30
40
50
60
70
80
90

princeton.edu willab.fi isi.edu supermedia.pl

iOFFiOPT, d=4 Classic

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 19

Table 1. TCP Congestion Control Internal Events

Event Meaning Description SSCA FRFR Sub
1 Retransmission timer timed out Possibly congested network or the segment was lost. X X

2 A new ACK was received Increment snd_cwnd either exponentially (if less than sstheresh) or
linearly otherwise. X

3 snd_cwnd has reached the slow start
threshold ssthresh Switch incrementing snd_cwnd from exponential to linear. X

4 A third duplicate ACK was received A segment was probably lost, perform fast retransmit. X X

5 A fourth (or more) duplicate ACK was
received One segment has left the network; we can transmit a new segment. X

6 A new ACK was received Retransmitted segment has arrived at the destination and all out of
order segments buffered at the receiver are acknowledged. X X

Table 2. Target ABone player nodes

RTT measurment Target ABone node Country
min average max mean deviation

Number of
hubs

ave.willab.fi Finland 0.16355 0.16606 0.16647 0.798 24
zzz.abone.supermedia.pl Poland 0.14705 0.14844 0.15701 3.023 23

abone-01.cs.princeton.edu USA 0.03945 0.04002 0.04524 1.319 17
dad.isi.edu USA 0.06548 0.06572 0.06610 0.186 19

Table 3. Experiment control flags and running modes.

Control flag Effect
iTCP Turns on/off the interactivity service.
EVENT Turns on/off the event notification service.

SYMB Turns on/off the symbiosis feature of the transcoder. When this flag is set, the signal handler invokes the event handler to
reduce the bit rate of the decoder. Otherwise, the signal handler just records the event type and time.

OPT
Means (OPTimal mode). Used to choose between two modes of Symbiotic rate reduction (i) optimal backoff mode which
uses the symbiosis throttling model described in section 4. or (ii) exponential backoff mode which uses a preset retraction
rate and duration.
Control Flags Running mode
iTCP EVENT SYMB OPT

Comments

iOPT ON ON ON ON Full interactivity. Use the optimal backoff symbiosis throttling.

iEXP ON ON ON OFF Full interactivity. Use the exponential backoff symbiosis throttling.
iOFF ON ON OFF X Subscribe, report event, but do not change bit rate. Used to measure overhead.
Classic OFF X X X Turn off all interactivity features.

To appear in Journal of Computer Networks,
Elsevier Science, (Accepted March, 20, 2006).

COMNET: KHAN/ZAGHAL 20

Table 4. Average frame delay and acceptance ratio

princeton.edu isi.edu willab.fi supermedia.pl
mode

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

Average
Delay

Accept
Ratio

iOPT 0.518 0.797 2.018 0.415 2.504 0.319 1.38 0.692
iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.284
iOFF 6.279 0.455 10.82 0.197 8.752 0.155 8.485 0.133

d=2

Classic 3.047 0.461 10.957 0.217 6.615 0.273 8.485 0.147
iOPT 0.897 0.976 2.029 0.737 -0.641 1 0.727 1
iEXP 2.613 0.529 -0.015 1 -1.239 1 2.411 0.777
iOFF 6.279 0.455 10.82 0.197 8.752 0.293 8.485 0.277

d=4

Classic 3.047 0.805 10.957 0.395 6.615 0.299 8.485 0.291
iOPT 0.883 1 3.974 0.679 1.623 1 1.387 1
iEXP 2.613 0.997 -0.015 1 -1.239 1 2.411 1
iOFF 6.279 0.455 10.82 0.329 8.752 0.295 8.485 0.277

d=6

Classic 3.047 0.805 10.957 0.395 6.615 0.535 8.485 0.52

Table 5. Percentage of total bits delivered for each mode

 princeton.edu isi.edu supermedia.pl willab.fi
 Target Bits Actual Bits Target Bits Actual Bits Target Bits Actual Bits Target Bits Actual Bits
iOPT, d=2 0.912 0.913 0.898 0.901 0.886 0.886 0.929 0.929
iOPT, d=4 0.966 0.966 0.892 0.897 0.814 0.826 0.789 0.791
iOPT, d=6 0.975 0.98 0.94 0.945 0.87 0.88 0.867 0.874
iEXP 0.843 0.843 0.835 0.835 0.862 0.862 0.86 0.86
iOFF, Classic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6. hbest and Treovery statistics for three ABone nodes.

princeton.edu willab.fi supermedia.pl isi.edu d(sec) event
hbest Trecovery hbest Trecovery hbest Trecovery hbest Trecovery

e1 512240 1.520135 1443311 15.68562 1333511 14.49148
e2 491954 1.459965 1292875 14.04808 1223663 13.29792 2
e3 496552 1.476599 1309004 14.22661 1257601 13.66691
e1 279963 0.851075 602184 6.551785 665086 7.228908
e2 261526 0.792414 564819 6.145352 584324 6.355469 4
e3 259565 0.788820 604674 6.579283 602115 6.550372
e1 186117 0.573669 486808 5.301540 467211 5.085250
e2 173629 0.525550 419186 4.557723 401019 4.368733 6
e3 172046 0.539606 307244 3.343913 411801 4.480751

