

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 117

Exploiting Webspace Organization for Accelerating Web Prefetching

Javed I. Khan and Qingping Tao

Media Communications and Networking Research Laboratory
Department of Computer Science

Kent State University, USA
javed|qtao@kent.edu

Abstract
The paper explores how the structure of Webspace and the reading pattern of the surfer affect Web prefetch. We have
conducted a series of experiments based on a new prefetch proxy and studied the prefetch performance on several
dominant hyperspace structures including chain, tree, and complete graph sub-structures. The study assesses the
system’s responsiveness and the excess prefetching for various user interaction duration, surfing and prefetch
sequences. The results show that the knowledge about the structure of Webspace can be used for intelligent
prefetching. The study also offers some interesting insight for authors on how to design a prefetch friendly collection
for increasing site responsiveness.

Keywords: Prefetch, User Interaction Behavior, Web Engineering

1. Introduction

For quite a few years, Web researchers have begun to
explore prefetching as a potential accelerating
technique [1, 2, 3, 4, 5] for web surfing. Prefetching has
played a key role in hyper accelerating CPU systems.
However, it is yet to meet similar level of success in
web surfing. Web prefetch often creates excessive
waste. Several studies found only about 2% of the
prefetched data are actually used [6]. It is interesting to
note that majority of the suggested web prefetching
schemes resorted to the access frequency as the
principle beacon to guide their prefetch activities.
These techniques varied in the recipe for formulating
the ranking. Unfortunately, only access frequency
based ranking is recently found to be non-optimal [7].
While the access frequency remains an important clue,
but it may not be enough. More innovation in
techniques for intelligence path prediction and selection
are required.

Interestingly, a few recent works can be found that have
suggested the use of novel information- beyond access
frequency. In a previous work [8], we suggested
discerning media types of composite hypermedia- while
selecting prefetch path. Most modern pages now
contain embedded entities such as banners, Java
applets, flash presentations, etc. with varying rendering
constraints. This work demonstrated that the prefetch of
individual components within composite multimedia
pages could be optimally scheduled based on their
types and internal rendering dependencies. Indeed for
some parts, prefetch can be altogether avoided [8]

without any loss of responsiveness compared to brute
prefetch. Results showed considerable reduction of
wasted prefetch (by almost 80%), and additional
improvement in system responsiveness up to 3.6 times
for heavily composite collections. Davison [9]
examined another novel textual similarity-based
prediction technique. This ingenious technique
suggested the use of similarity of a model of the user's
interest to the text in and around the hypertext anchors
of recently requested Web pages in prefetch path
selection.

In this paper, we discuss another potentially interesting
beacon- the knowledge about hyperspace organization.
A Web system is a conduit of communication between
the two principal parties – the content developer and the
content reader. The intermediate components – the
server, the browser, the cache and the proxy-- all works
as a mere facilitator in this communication. It seems
therefore almost natural that the prefetch performance
should be strongly dependent on the behavior of these
two principals. This means, on one hand, the nature
and organization of the content and on the other hand,
the reading and interaction style of the reader should
have an important impact on the prefetch performance.
Interestingly, no previous study has focused on either.
The intent of this paper is to shed some lights in this
interesting void.

There are two related questions that naturally arise from
the proposition. Is there any regular structure in the
organization of the Web collection? Secondly, even if
there is one, is it possible to exploit such structural
information? In this paper, along with a performance

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 118

study, we will discuss both. The paper is organized in
the following way. Section 2 first presents a discussion
on the general organization of the Webspace and
explains the existence of dominant regular structures.
Section 3 then focuses on the user access and
interaction patterns. Section 4 then presents the
architecture of a client side proxy based on prefetch
system that we have implemented for this study.
Finally, section 5 presents the performance.

2. Organization of Webspace

Web pages are becoming more and more sophisticated.
Web designers are eager to spend serious efforts to
develop aesthetically appealing pages and intuitive and
friendly Web interfaces. However, currently there is
very little handle available by which they can improve
or affect the performance (other than reducing the
graphics file sizes). Yet the organization of Web
structure can have tremendous impact on prefetching
performance. However, any such provisioning would
require a formalism to describe Webspace organization.
This is not trivial. Current Web contents come in
various complex organizations. Web sites generally
contain document collections. A collection can be
viewed as well connected group of Web objects
generally associated by some abstract theme. At first
glace it seems collections are quite irregular. However,
interestingly an analysis of recent Web pages seems to
suggest that though ideal regular patterns seldom
appear in the hyperlink graph representing the link
structure of a collection but, a significant sub-graph
tends to conform towards few regular structures.

In our modeling process, we therefore defined a
concept called the Dominant Pattern Graph (DPG) of
a collection. If a hyperlink graph is pruned to it’s
principally used links this pruning tends to provide a
few regular graph patterns. We call it dominant pattern.
The principality of hyperlinks can be determined from
the design time specification by author or by frequency
sorting. We easily found several major dominant
patterns in massive number of collections. Below are
some examples.

One common form of DPG is chain. For web-based
photo albums, slides show, PDF documents, multi-page
forms (however, which are static), Web-based
examinations & quiz forms on each page, we typically
click “Next” to move on. The surfer seems to be
moving though a form of sequential chains. One of its
features is that one Web page only includes one
principal hyperlink. Only one Web document needs to
be prefetched each time. Fig. 1(a) shows an example of
photo album from CNN® news sites. This structure is
now very common in the Web. We could find albums

in hundreds of major news sites. Note that the page has
other links as well. However, by conscious design, the
author keeps only one dominant link. Also typical
surfers do discover this specific organization. With
their familiarity with the interface construct of ‘virtual
album’, surfers tend to follow the chain as intended.

Another frequently found DPG we encountered is tree.
Tree structure emerges in the central organization of
complex portals. Also, it can be commonly found in
the DPG of e-books, catalogues, directories, “Help” and
“FAQ” pages. Each Web page includes its own
hyperlinks to a set of child pages. Meanwhile, it is
either a direct or indirect child page of the main page.
Web page in Fig. 1(b) shows an example. It is a
Navigable Map. The dominant links are the direction
and the zoom level selectors. The direction navigators
form tree. A tree may have many brunches. But an
interface designer can often predictably guide readers
towards certain brunches than others by design, and
thus can reduce the branching factor of the dominant
tree.

Another common dominant pattern we found is the
complete sub-graph. A huge number of portal pages,
particularly with sidebar and menu based organizations,
show dominant patters in the form of a fully connected
sub graph. Most online pages, particularly for e-books
and online shops, with a common navigation side-bar
or top-bar tends fall into this category of organization.
Readers can easily move back and forth through any of
the Web pages within the collection, no matter what the
current page is. Each Web page is connected with each
other. We consider this type of organization as the
complete graph pattern. Fig. 1(c) shows an example for
online encyclopedia with a dominant complete sub
graph pattern. Also, in Fig. 1(b) the zoom levels forms
a complete sub-graph.

In our study, we also found many other somewhat
complex but regular patterns. An interesting one is a
combination of complete graph sub-sections organized
as hierarchical tree. Fig. 1(d) shows a typical example
from the Kent State University’s front portal. Each tab
button leads to a new sub-collection. Each sub-
collection has separate complete sub-graphs. This
pattern appears with hierarchical table of contents, and
each subgroup’s table of content appearing in all pages
within the subgroup. This organization is quite common
in many large and deep portals (typically corporate)
designed to support multiple user groups who access a
site from different perspectives. Therefore, we include a
forth set called “a tree with complete core” in our study.

Though, we found other more complex dominant
patterns, in this paper, we will focus on the above
explained four DPGs namely 1) Chain, 2) Tree, 3)
Complete graph, and 4) Tree with core graph.

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 119

 Fig. 1(a) An Example of Chain in Photo Album. The next and previous buttons represent the dominant links

 Fig. 1(b) An Example of Tree in Yahoo Map Navigation. The navigation buttons provide a dominant tree

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 120

Fig. 1(c) An Example of Complete Graph. The links “A”, “B”, “C” etc. appear in all the pages

 Fig. 1(d) An Example of Tree with Core Graph. The Tabs take to another sent of complete graph sub menu

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 121

3. User Reading Behaviors

The modeling of user reading pattern is also nontrivial.
There are several complex factors. Different reader has
different text reading speed. It also depends on the
content type. Most Web pages found in state-of-the-art
sites today not only contain a simple parent HTML file
with few embedded images. Pages served by modern
servers today are complex and composite and contains
embedded entities such as banners, Java applets, flash
presentations, etc. with varying rendering constraints,
and bytes per second viewing time. They generate
variety of experiences beyond simple text reading.
Also, various readers may have different psychological
pattern guiding their browsing habit. For example, in
the case of reading an online e-book, different readers
view them in different surfing sequence. After finishing
reading the instruction for chapter 1, some readers may
continue reading section 1 of chapter 1, and other may
skip to the instruction for chapter 2. Different answers
will certainly result in different performance results for
prefetching.

The detail modeling of the user behavior is quite
complex. However, the goal of this study was to
capture the essence. Therefore we limited the study on
two core parameters-- 1) relative interaction time; 2)
surfing sequence as elements of user interaction habit.
Interaction time is defined as the time a reader spends
on a certain page in the collection. It is the viewing
duration or the interaction time between the events a
user receives a requested page and sends out the second
request. For the purpose of analyzing the prefetching
performance, we call it interaction interval, and
normalized it with respect to the entropy of the page in
bytes/sec. This notion allows us to be more general than
using just the reading time. The interaction time can be
the time spent in watching an animation, in listening to
a sound insert, or even in filling up a form. Usually, the
more time readers spend on each Web page, the more
Web pages can be acquired by prefetching.

The surfing sequence is a path of Web pages through
which the user surfs. Typically the possible range of
surfing sequences a surfer can follow is bounded by the
design of the collection. The designer can further
encourage surfer to follow certain sequences over
others by tuning the layout and placement of the links.
We investigated the performance for selected major
patterns of surfing paths based on the graph type. The
choices however, are related to the original DPG
organization of the document. Therefore, these will be
explained along with the DPG experiments.

4. Recording Time for Implement Event

4.1 System Setup
For this experiment we developed an in-house
“organization aware” prefetch capable Proxy, and a
script driven client Browser. The proxy can be
collocated with a surfing client, or placed at slightly
deeper egress point serving multiple clients. In our
setup, we used the later. For performance analysis we
inserted time tracing code inside the Proxy and the
Browser. We recorded time for all events happening at
the client and the proxy as per the following event
model.

4.2 Event Model & Logging
As can be seen in the model, prefetch improves the
response time in two ways. Fig. 2(a) shows the fully
folded prefetching (FFP) and Fig. 2(b) shows the case
of partially folded prefetching (PFP). We assume that a
user wants to view Web page N1, which contains two
hyperlinks to Web page N11 and N12. After finishing
reading N1, it goes through N11, which has a hyperlink
to Web page N111. Cn represents recording time on the
client side, Pn represents recording time on the proxy
side, and Sn is recording time on the server side.

After the proxy receives a request from the client (at
P1), it parses the request message for the first document
N1 (P2). The first request arrives with cold cache. It
checks the cache directory and finds that there is no
cached file for N1. So it establishes a connection to the
server (P3). After getting response back from the server
(P4), it sends N1 back to the client (P5). Meanwhile,

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8

P7

P6
P5
P4 S2

S1

C4

C3

C2

C1

P9

P11

S7

S6
S5
S4
S3

N111

N11

N11

N11

N12

P12

P10

P13

C1, C3: Client sends a request
C2, C4: Client gets a response
P1, P10: Proxy receives a client’s request
P2, P11: Proxy parses the request message
P3: No file in cache, send request to the server
P4, P8, P9: Proxy gets Server ‘s reply
P5, P12: Proxy sends the reply to Client
P6, P13: Proxy extracts the first hyperlink

and sends a request to Server
P7: Proxy extracts the second

hyperlink and sends a request to Server
S1, S3, S5, S7:

Server receives a Proxy’s request
S2, S4, S6: Server sends a reply to Proxy

Parsing Time = P2 – P1 = P11 – P10
Cache Look up Time = P3 – P2 = P11 –P10
Response Time = P5 – P1 = P12 –P10
Extracting Time = P6 – P5 = P13 – P12
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

Fig. 2(a) Events Definitions and Time Distribution for
Fully Folded Prefetching (FFP)

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 122

the proxy extracts two hyperlinks to document N11 and
N12 and prefetches them (P6 and P7) according to their
priorities.

The proxy receives the server’s replies (at P8 and P9).
At C2, the client gets N1 and begins interaction. On the

proxy side, we call the difference between value of P5
and P10 as interaction interval. After the proxy receives
the second request from the client (P10), N11 is parsed
(P11). In case of FFP (Fig-2(a)) N11 is already in proxy
cache before the request for N11 arrives. By checking
the cache directory, it realizes that document N11 has
already been prefetched (P11). N11 can be immediately
returned to the client (P12). Then the proxy continues
to extract the hyperlink N111, which is embedded in
document N11, and prefetches it from the server. In
PFP (Fig. 2(b)), N11 is not yet in the cache although
request for it is already underway. Fig. 2(b) illustrates
the case. When the prefetch mechanism is turned off,
then all documents are fetched using cold cache
method. This is similar to the case of getting N1. We
also allow passive caching to be disabled. When the
passive caching is turned off then a document is
removed from the proxy cache immediately after each
time it is served.

4.3 Pattern Language
We also developed a set of reference collections with
various organizations. This was performed by first
generating a set of node documents each with a
specified payload sizes. These were then linked in
various ways as per the desired test pattern types.

Each hyperlink that belonged to the dominant pattern
edge was given an additional attribute. It identified the

hyperlink within the dominant pattern graph. We
adopted a simple marking scheme as following.

For example, for Chain, we used hyperlink attribute
makers <PATTERN=CHAIN.PREVIOUS>
<PATTERN= CHAIN.NEXT> to identify the two
dominant links. For Tree, the children links were
marked with rank as <PATTERN=TREE.CHILD.n>.
For Complete Graph, we ranked them as
<PATTERN=FULL.SIBLING.n> to identify ordered
siblings. For Tree with Complete Core, we ranked them
as <PATTERN=TC.SIBLING.m>, and
<PATTERN=TC.CHILD.n>, for identifying links to
sibling and links to child sets respectively. We also
provisioned an attribute marker
<PATTERN=NOPREFETCH> to explicitly halt
prefetching.

We then programmed the prefetch proxy to follow
various prefetch sequences based on the dominant
pattern markers found in the prefetched pages and the
surfing sequence selected by the experimenter.

5. Performance Results Analysis

We evaluated a large number of collections with
various organizations and various payloads. Even
within a dominant pattern graph class we tested
instances with large number of sizes. Given the space
of this paper, we only include results from the specific
but representative cases.

The objective of any prefetch system is to reduce the
user waiting time and increase systems responsiveness.
The main cost factor is the wasted prefetch- i.e. the data
fetched but never used. We present the impact on both
the performance measures: 1) response time; 2) the
amount of data transfer.

The performance for response time was evaluated by
the responsiveness. We define lag-time as the time the
users have to wait after clicking a hyperlink. (Ci-Ci-1),
where i is even. Relative responsiveness is the ratio of
cumulative lag time experienced with active
prefetching to that without any prefetching. (Ci-Ci-1),
where i is odd is the interaction time.

The performance for data transfer was evaluated by
recording the fetched data volumes with and without
prefetch enabled. We calculated the ratio to show the
relative overhead. Finally, for each experiment we also
varied the interaction interval. We chose 5 seconds, 10
seconds, 15 seconds, 20 seconds, and 25 seconds as
five different groups of interaction interval.

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8
P7

P6

P5
P4 S2

S1

C4

C3
C2

C1

P10

P12

P9

S7

S6

S5
S4

S3

N111

N11
N11

N11

N12

P13

P11

C1, C3: Client sends a request
C2, C4: Client gets a response
P1, P8: Proxy receives a Client’s request
P2, P9: v Proxy parses the request message
P3: No file in cache, send request to
the server
P4, P10, P13: Proxy gets the server ‘s reply
P5, P11: Proxy sends the reply to Client
P6, P12: Proxy extracts the first hyperlink
and sends a request to Server
P7: Proxy extracts the second
hyperlink and sends a request to Server
S1, S3, S5, S7: Server receives a Proxy’s
request
S2, S4, S6: Server sends a reply to Proxy

Parsing Time = P2 – P1 = P9 – P8
Cache Look up Time = P3 – P2 = P10 – P9
Response Time = P5 – P1 = P11 – P8
Extracting Time = P6 – P5 = P12 – P11
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

Fig. 2(b) Events Definitions and Time Distribution for
Partially Folded Prefetching

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 123

Fig. 3 A Chain, Two Full Trees, a Path in Tree, Two Complete Graphs, and a Tree with Core Graph

N3N2 N4 N5 N6N1

(a)

(d)

(b)

N0

N1 N2

N22N11

N3

N31N23N13N12 N21 N32 N33

N0

N1 N2

N212

N22N21N12N11

N2212N2211N2122N2121N2112N1222 N2111N1212N1211N1122N112N1111

N221N122N121N112N111 N211 N222

N1121 N1221 N2222N2221

Path 1 Path 2 Path 3

N0

N2 N3

N33N21

N4

N42N41N35N34N25N23 N24N22N14N13N12 N32N31N15

N5N1

N43 N44 N45 N51 N53N52 N54N11

(c)

(f)

N4
N6

N5

N3
N0

N21
N2

N1

N11 N12

N22

N61N61

N52

N51

N32

N31

N4
N6

N5

N3
N0

N21
N2

N1

N11 N12

N22

NN62

N52

N51

N32

N31

N1
N2

N3

N4

N7

N8

N9

N10

N5

N1
N2

N3

N4

N7

N8

N9

N10

N6
N5

N6

N5 N3

N1

N2N6

N5 N3

N1

N2

N4

(e) (g)

N41

N42

5.1 Chain
Fig. 3(a) shows a sample test hyper graph for Chain.
Here the nodes are connected in a sequence. N1 is the
first view object. In a chain only one prefetch sequence
is logical. For surfing sequence however, we conducted
two experiments. Half sequence reading and full
sequence reading. In the half sequence reading for the
above graph the surfer would only read N1, N2, and
N3; in full sequence reading, the surfer would visit
through N1, N2, N3, N4, N5, and N6.

1). Response Time Analysis:

The performance for response time in chain is shown in
Table 6 and Fig. 4. For half sequence reading the
maximum improvement in responsiveness we observed
is about 1.86 times. In full sequence reading of all the
documents, the responsiveness improved about 4.56
times. Actually, the more documents the surfer views,
the more improvement of responsiveness performance
we can acquire, since we can view all documents as
prefetched except for N1. We found that the system can
be designed so that the responsiveness is not affected
by interaction interval. The minimum interaction
interval can guarantee that one Web document could be
prefetched.

2) Data Volume Analysis:

The performance for data volume in chain is shown in
Table 7 and Fig. 5. When the surfing sequence is N1,
N2, and N3, the maximum amount of data is 4 units.
Compared to the data volume without prefetching, only
one extra unit data volume was increased. If we view
all 6 documents, 6 units of data volume will be
transferred and no extra amount of data is produced. So,
whatever the surfing sequence is, the maximum extra
data volume is one unit.

5.2 Analysis of Tree

Fig. 4 Performance for Response Time in a Chain and a Tree with
 Core Graph

0

0.2

0.4

0.6

0.8

1

3 5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s Node = 3

Node = 6

Child Set
First
Core Set
First

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 124

For tree experiment we generated collections with
varying heights and breadths. Two examples are
shown. In Fig. 3(b), 13 nodes are organized into a tree
with three levels (height H equals 3). Each of N0, N1,
N2, N3, contains three hyperlinks. The branch factor
(BF) equals 3. In Fig. 3(c), height also equals 3, but
branch factor is 5. Each of N0, N1, N2, N3, N4 and N5

contains five hyperlinks. We considered two types of
tree reading 1) full tree reading and 2) a path in a tree
reading. Unlike chain, a tree can be surfed in several
orders. We used two prefetching sequences 1) Left first
and 2) Right First. The corresponding node sequences
are shown in table 1.

5.2.1 Full Tree Reading
To test various surfing behavior of the full tree reading
we let the surfer use three different surfing sequences:
1) Depth First (α), 2) Breadth First (β), and 3) Random
Connected Walk (γ). Except for the Random Connected
Walk, the both depth first and breadth first ordered the
nodes left to right. We repeated the experiment only for
Canonical cases. Symmetrical cases were not
considered. The sample node sequences for various
runs for the sample graph are shown in table 2.

 Prefetching Sequence
Type

Node

 Left First Right First

N0 N1,N2,N3,N4,N5 N5,N4,N3,N2,N1

N1 N11,N12,N13,N14,N15 N15,N14,N13,N12,N11

H = 3 N2 N21,N22,N23,N24,N25 N25,N24,N23,N22,N21

BF = 5 N3 N31,N32,N33,N34,N35 N35,N34,N33,N32,N31

N4 N41,N42,N43,N44,N45 N45,N44,N43,N42,N41

N5 N51,N52,N53,N54,N55 N55,N54,N53,N52,N51

N0 N1,N2,N3 N3,N2,N1
H =3

N1 N11,N12,N13 N13,N12,N11

BF = 3
N2 N21,N22,N23 N23,N22,N21

 N3 N31,N32,N33 N33,N32,N31

Table 1 Lists of Prefetching Sequences in a Full Tree

1). Response Time Analysis:

The performances for response time in a full tree with
Left First and Right First as prefetching sequence are
shown in Table 6, Fig. 6 and Fig. 7 respectively.

Surfing sequence
Type

 Depth First Breadth First Random

H = 3
BF = 5

N0, N1, N11, N12

N13, N14, N15,

N2, N21, N22,

N23, N24, N25,

N3, N31, N32,

N33, N34, N35,

N4, N41, N42,

N43, N44, N45,

N5, N51, N52,

N53, N54, N55

N0, N1, N2, N3,

N4, N5, N11,

N12, N13, N14,

N15, N21, N22,

N23, N24, N25,

N31, N32, N33,

N34, N35, N41,

N42, N43, N44,

N45, N51, N52,

N53, N54, N55

N0, N4, N41, N42

N2, N21, N22,

N23, N24, N25,

N3, N33, N31,

N32, N34, N35,

N1, N5, N52, N53

N54, N55, N51,

N43, N44, N45,

N11, N12, N13,

N14, N15

H = 3
BF = 3

N0, N1, N11, N12

N13, N2, N21,

N22, N23, N3,

N31, N32, N33

N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

Table 2 Lists of Surfing Sequences in a Full Tree

We observe that the prefetching sequence and surfing
sequence affect the performance for response time. The
improvement in responsiveness is the best when we
compare reading Web documents in Depth First
manner compared to Breadth First or Random. In Fig.
6, when prefetching sequence is Left First, The
responsiveness with Random and Breadth First is up to
2.4 and 3.7 times less than that with Depth First
respectively. In Fig. 7, when prefetching sequence is
Right First, the responsiveness with Random and
Breadth First is up to 0.6 and 0.7 times less than that
with Depth First respectively. We also observed that no
matter what the prefetching sequence is, with the
branching factor increasing, the impact of prefetching
performance always increases. In addition, with
growing interaction interval, the relative responsiveness

Fig. 5 Performance for Data Volume in a Chain, a Tree and a Tree
with Core Graph

0

10

20

30

40

50

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t) Node = 3

Node = 6
H=3, BF=3
H=3, BF=5
Child Set First
Core Set First

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 125

improves (value decreases) gradually. There seems to
be an intuitive explanation. The more is the interaction
interval the more is the scope of effective prefetching.
It seems it might be possible to determine a matched
prefetching state where a web page designer might be
able to space the links while controlling the content
volume. 2). Data Volume Analysis:

The performance for data volume in a full tree is shown
in Table 7 and Fig. 5. Whatever the branching factor is,
data volume is not affected by the prefetching sequence
or the surfing sequence. Interaction interval does not
affect overall data volume. The total amount of
transferred data is the same as without prefetching.
However, what matters is the branching. When the
branching factor is 5, data volume is 31 units; when the
branching factor is 3, data volume is 13 units.
Therefore, a case where excessive overload is a concern
the prefetch proxy should limit the branching factor
allowable for prefetch.

5.2.2 Paths in a Tree
In this set of experiments (Fig. 3(d)) we consider the
case where the surfer chooses to visit only one path
from root to leave in a tree. However, we again choose
three variants.1) Left Path (Path 1), 2) Right Path (Path
2), and 3) Random Chain Walk (Path 3). For the graph
shown in Fig. 3(d), in path 1, the surfing sequence is
N0, N1, N11, N111, and N1111 in order; in path 2, the
surfing sequence is N0, N1, N12, N122, and N1221;
and in Path 3 the sample random surfing sequence is
N0, N2, N22, N222, and N2222. We conducted
experiment based on two different prefetching
sequences: 1) Left First (LF) and 2) Right First (RF).
We adopt the same implementation methods as in the
experiment with a full tree.

1). Response Time Analysis:

The performance for response time in one path in a tree
reading is shown in Table 6 and Fig. 8. We observe that
path 1’s responsiveness with Left First prefetching
sequence is the same as path 3’s one with Right First
prefetching sequence.

We can also find that path 3’s responsiveness with Left
First prefetching sequence is the same as path 1’s
responsiveness with Right First prefetching sequence.
If interaction interval is 5 seconds, the response time
with prefetching is the same as that without
prefetching, since the next page we will move through
is not a prefetched document. However, whatever
prefetching sequence is, either Left First or Right First,
path 2 always has the same change for the
responsiveness value.

When prefetching sequence is Left First, the
prefetching performance in path 1 is better than that in
path 2 and path 3. The responsiveness with path 2 and
path 3 is up to 2 and 4 times less than that with path 1
respectively. With growing interaction interval, the
system responsiveness always increases in a gradual
fashion for path 1, path 2, and path 3.

Fig. 6 Performance for Response Time in Tree with Left First (α–
Depth First, β– Breadth First, γ– Random Connected Walk)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25
Interaction Interval

R
es

po
ns

iv
en

es
s H =3, BF =5, α

H =3, BF =5, β

H =3, BF =5, γ

H =3, BF =3, α

H =3, BF =3, β

H =3, BF =3, γ

Fig. 7 Performance for Response Time in Tree with Right First
(α– Depth First, β– Breadth First, γ– Random Connected Walk)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s H =3, BF =5, α

H =3, BF =5, β

H =3, BF =5, γ

H =3, BF =3, α

H =3, BF =3, β

H =3, BF =3, γ

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 126

2). Data Volume Analysis:

The performance for data volume in one path in a tree
reading is shown in Table 7 and Fig. 9. If interaction
interval is 5 seconds, path 1’s data volume with Left
First prefetching sequence is (5 units) same as the path
3’s one with Right First prefetching sequence. The path
3’s data volume with Left First prefetching sequence is
(9 units) same as the part 1’s one with Right First
prefetching sequence. No matter what prefetching
sequence path 2 uses, its data volume is 7 units. With
Left First prefetching sequence, the amount of
unnecessary data in path 2 and path 3 is up to 40% and
80% more than that in path 1 respectively. Once it
reaches 10 seconds, the performance for data volume in
part 1, part 2, and part 3 are the same. They are all 9
units no matter what is their prefetching sequence.

5.3 Complete Graph
A complete graph varies only with respect to the size of
the clique. Two examples respectively with 5 and 9
hyperlinks are shown in Fig. 3. We consider the case of
clockwise prefetch sequence (anticlockwise prefetch
creates symmetrical cases). The nodes in prefetch
sequence are shown in Table 3. With respect to it, we
consider three different types of surfing sequences.

These are 1) Clockwise (CW), 2) Counter Clockwise
(CCW), and 3) Random Walk (RW). These walks are
shown in Table 4.

1). Response Time Analysis:

The performance for response time in a complete graph
is shown in Table 6 and Fig. 10. As expected, no matter
how many nodes they have, the prefetching
performance in clock matched reading direction is
always better than that in counter clock matched case.

The prefetching performance in random reading
direction is in between clockwise and in counter
clockwise directions. The responsiveness with Random
and Counter Clockwise is up to 5.3 and 10.3 times less
than that with CW respectively. With growing number
of nodes, the impact of prefetching performance
increases. With growing interaction interval, the system
responsiveness increases in a gradual fashion.

2). Data Volume Analysis:

The performance for data volume in complete graph is
shown in Table 7 and Fig. 11. Different surfing
sequences result in different performance of data
volume. The amount of data in matched sequence
(clockwise) reading direction is always less than that in
reversed sequence (counter clockwise). We again note
that the data volume for any reading order always
increases gradually when interaction interval increases
gradually. All of them produce a lot of extra amount of
data compared to the amount of transferred data
without prefetching. The more nodes we move through,
the more extra amount of data is produced.

 Prefetching Sequence Total
Nodes

Node Clockwise

 N1 N2,N3,N4,N5,N6

 N2 N3,N4,N5,N6,N1

 6 N3 N4,N5,N6,N1,N2

N4 N5,N6,N1,N2,N3

N5 N6,N1,N2,N3,N4

N6 N1,N2,N3,N4,N5

N1 N2,N3,N4,N5,N6,N7,N8,N9,N10

N2 N3,N4,N5,N6,N7,N8,N9,N10,N1

N3 N4,N5,N6,N7,N8,N9,N10,N1,N2

N4 N5,N6,N7,N8,N9,N10,N1,N2,N3

 10

N5 N6,N7,N8,N9,N10,N1,N2,N3,N4

 Fig. 8 Performance for Response Time in Paths of a Tree

0.00
0.20
0.40
0.60
0.80
1.00
1.20

3 5 10 15 20 25

Interaction Interval

Re
sp

on
si

ve
ne

ss

Path 1(LF)
& Part 3
(RF)
Path 2 (LF &
RF)

Path 1(RF)
& Path 3
(LF)

Fig. 9 Performance for Data Volume in Paths of a Tree

0.00

2.00

4.00

6.00

8.00

10.00

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t) Path 1(LF) &

Path 3(RF)

Path 2(LF &
RF)

Path 1(RF) &
Path 3(LF)

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 127

N6 N7,N8,N9,N10,N1,N2,N3,N4,N5

N7 N8,N9,N10,N1,N2,N3,N4,N5,N6

N8 N9,N10,N1,N2,N3,N4,N5,N6,N7

N9 N10,N1,N2,N3,N4,N5,N6,N7,N8

 N10 N1,N2,N3,N4,N5,N6,N7,N8,N9

 Table 3 Lists of Prefetching Sequences in a Complete Graph

 Surfing sequence
Total
Nodes Clockwise Counter

Clockwise Random Walk

6

N1,N2,N3,N4,

N5,N6

N1,N6,N5,N4,

N3,N2

N1,N4,N6,N2,

N5,N3

10

N1,N2,N3,N4,

N5N6,N7,N8,

N9,N10

N1,N10,N9,N8,

N7,N6,N5,N4,

N3,N2

N1,N6,N3,N5,

N9,N7,N2,N8,

N4,N10

 Table 4 Lists of Surfing sequences in a Graph

5.4 Tree with Core Graph
Fig. 3(g) shows an example of test tree with core graph.
Here one core consists of N0, N1, N2, and N3. We refer
to it as core 1. Another core consists of N4, N5, and
N6. We refer to it as core 2. Each node is a parent in
the core. It has its own children. For instance, N0 is a
member of core 1. Meanwhile, it is the parent of three
children, N4, N5, and N6, which are members of core
2. Core Set means all members of the core are fully
connected. Child Set is connected via a tree structure
with the core. With respect to this DPG, two types of
prefetching sequences are selected. We call them 1)

Core Set First and 2) Child Set First. We use one
Depth First surfing sequence here (shown in Table 5).

1). Response Time Analysis:

The performance for response time in Tree with Core is
shown in Table 6 and Fig. 4. With interaction interval
increased, the value of responsiveness decreases
gradually for both Core Set First and Child Set First.
However, if we use Child Set First as prefetching
sequence, its performance improvement for
responsiveness is better than Core Set First. That means
Child Set First prefetch closely matches the Depth First
surfing sequence. The responsiveness with Core Set
First is up to 2 times less than that with Child Set First.

2). Data Volume Analysis:

The performance for response time in Tree with Core is
shown in Table 7 and Fig. 5. If Child Set First is
selected as prefetching sequence, its performance
improvement for data volume is better than Core Set
First. The amount of unnecessary data with Core Set
First is up to 43% more than that with Child Set First.

With interaction interval increased, the data volume
increases gradually for both of them, and the extra
amount of data also increase gradually.

6. Conclusions and Future Works

First generation of prefetch technique suggested
schemes dependant primarily on “frequency” of access
analysis. In this paper, we presented an study on the
impact of web-space organization and corresponding
surfing sequences on prefetch. It seems to suggest that
smarter prefetching techniques can be developed if the
structure of Webspace and user reading behavior can
also be brought into consideration.

Fig. 10 Performance for Response Time in Complete Graph

0

0.2

0.4

0.6

0.8

1

3 5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s CW (6)

CCW (6)

Random(6)

CW(10)

CCW(10)

Random(10)

0

10

20

30

40

50

3 5 10 15 20 25

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t) CW(6)

CCW(6)
Random(6)
CW(10)
CCW(10)
Random(10)

Fig. 11 Performance for Data Volume in Complete Graph

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 128

We have observed the existence of dominant pattern
graphs in the Webspace particularly in large
collections. The paper presents experiments on several
types of abstract yet commonly occurring dominant
patterns in hyperspace including chain, tree, complete
graph, and complex tree with core. Here is the brief
summary of the overall findings. For the cases studied
we found that compared to a random prefetch system
(organization unaware), the response time of a matched
system (where the prefetch system can take advantage
of the Webspace organization) can be 1.6 - 6.3 times
faster. Not only that, it can also dramatically bring
down the amount of unnecessary prefetch down by a
factor of 1.8 - 2.0 or more. Also, in the worst case, a
completely mismatched system’s response time can be
about 1.7 - 11.3 times slower and can result in 1.3 - 1.4

times more unnecessary data transfer than a well
matched system.

6.1 Author Driven Organization
Now clearly the question is if such a scheme realizable?
User interest is probably their. With the maturity of
Web content design industry, now much interest exists
in the design of aesthetically as well as fast accessible
Web pages. Indeed, we suspect the interest is probably
much ahead than what current technology supports.

 Responsiveness

 Organization Type 3 s 5 s 10 s 15 s 20 s 25 s
 3 Nodes 0.62 0.35 0.35 0.35 0.35 0.35

Chain 6 Nodes 0.50 0.18 0.18 0.18 0.18 0.18

Depth First

0.23 0.15 0.08 0.08 0.08

Breadth First

0.69 0.38 0.08 0.08 0.08

BF=3

Random

 0.70 0.30 0.08 0.08 0.08

Depth First

 0.18 0.15 0.10 0.08 0.03

Breadth First

 0.81 0.61 0.42 0.23 0.03

Full Tree

BF=5

Random

 0.58 0.32 0.16 0.10 0.03

Left First

0.60 0.20 0.20 0.20 0.20 0.20
Path 1

Right First

1.0 1.0 0.20 0.20 0.20 0.20

Left First

0.87 0.60 0.20 0.20 0.20 0.20
Path 2

Right First

0.87 0.60 0.20 0.20 0.20 0.20

Left First

1.0 1.0 0.20 0.20 0.20 0.20

Tree

Paths in
Tree

Path 3

Right First

0.60 0.20 0.20 0.20 0.20 0.20

Clockwise

0.26 0.17 0.17 0.17 0.17 0.17

Counter Clockwise

0.90 0.83 0.67 0.50 0.33 0.17

6 Notes

Random

0.70 0.50 0.33 0.17 0.17 0.17

Clockwise

0.46 0.10 0.10 0.10 0.10 0.10

Counter Clockwise

0.94 0.90 0.80 0.70 0.60 0.50

Complete
Graph

10 Notes

Random

0.70 0.50 0.40 0.20 0.20 0.10

 Child Set First

0.67 0.67 0.33 0.20 0.17 0.17

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 129

Tree with
Core Graph

 Core Set First

0.80 0.80 0.73 0.60 0.33 0.17

 Table 6 the Performance for Response Time in All Organization Types

 Data Volume

 Organization Type 3 s 5 s 10 s 15 s 20 s 25 s
 3 Notes 3 4 4 4 4 4

Chain 6 Notes 6 6 6 6 6 6

Depth First

13 13 13 13 13 13

Breadth First

13 13 13 13 13 13

BF=3

Random

13 13 13 13 13 13

Depth First

31 31 31 31 31 31

Breadth First

31 31 31 31 31 31

Full Tree

BF=5

Random

31 31 31 31 31 31

Left First

5 5 9 9 9 9
Path 1

Right First

5 9 9 9 9 9

Left First

5 7 9 9 9 9
Path 2

Right First

5 7 9 9 9 9

Left First

5 9 9 9 9 9

Tree

Paths in
Tree

Path 3

Right First

5 5 9 9 9 9

Clockwise

6 6 10 15 20 25

Counter Clockwise

6 12 15 18 25 25

6 Notes

Random

6 8 12 16 18 25

Clockwise

10 10 17 23 33 41

Counter Clockwise

10 13 20 27 36 43

Complete
Graph

10 Notes

Random

10 14 18 27 35 43

 19 19 20 23 28 33

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 130

 Child Set First Tree with
Core Graph

 Core Set First
22 22 27 33 37 43

Table 7 the Performance for Data Volume in All Organization Types

The main technological hindrance is that current HTTP
or HTML has no mechanism, which designers can use
to author a prefetch friendly collection. Currently there
is no standard technique to express a hyperspace
pattern. However, the simple hyperlink attribute
markers we have used for the sake of this experiment
suggest that a marking language can easily be
developed to provision content driven pattern
specification. Any trivial extension of it, along with an

“organization aware” browser or proxy that can support
some prefetch sequencing policy, can significantly
accelerate Web surfing at ease in a prefetch-friendly
collection.

6.2 Authoring Tools
Indeed, authoring tools can also be easily enhanced that
will encourage content developer to mark at least one or
two dominant hyperlink(s) among the links s/he
embeds. The efforts should not be more than adding
alternate text for embedded images. Quite often, it is
already known by the content author. Content author
generally follows a premeditated theme based mental
organization to hyperlink the collection. Also, the
marking can be automatically generated by many
converters (such as PowerPoint® to HTML Converter).

6.3 Finding Patterns in Legacy HTML
Interestingly, dominant organization of a collection can
often be reverse engineered at post production stage
(such as by log or frequency analysis). A pre-existing
collection can be potentially made prefetch friendly
with some simple automated document analysis in
many special cases. For example, it is relatively easy to
identify chains. Almost out of any collection, a
dominant chain can be discovered by simple
modification of several currently available server tools.
Prefetch chain always increases surfing responsiveness
and it does not fetch any extra load. Also, the
documents involved in a dominant pattern tend to be
co-located in a single server. For example, a complete
graph cluster is generally placed in single directory.

6.4 Other Issues
An interesting advance problem will be to extract
pattern information when the hyperspace spans multiple
servers and multiple collections. Perhaps an HTTP
extension can used to see if the dominant pattern can be
found. We suspect reading time will show high
correlation with media type and content. Additional
study can be performed to determine the extents.

The beacon suggested here can be combined with other
techniques currently known. An approach based on
intelligent analysis of surfer’s bookmarks, history of

 Prefetching Sequence
Node

Child Set
First

Core Set
First

Surfing
Sequence
(Depth First)

N0 N1,N2,N3,N5,
N4,N6

N1,N2,N3,N5,
N4,N6

N1

N11,N12,N2,
N3, N0

N2,N3,N0,N11,
N12

N2

N21,N22,N3,
N0,N1

N3,N0,N1,N21,
N22

N3

N31,N32,N0,
N1,N2

N0,N1,N2,N31,
N32

N4 N41,N42,N0,
N5,N6

N5,N6,N41,
N42,N0

N5 N51,N52,N0,
N6,N4

N6,N4,N51,
N52,N0

N6 N61,N62,N0,
N4,N5

N4,N5,N61,
N62,N0

N0,N4,N41,N42,

N6,N61,N62,N5,

N51,N52,N1,N11,

N12,N2,N21,N22,

N3,N31, N32

Table 5 Lists of Sequences in a Tree with Core Graph

Published in the
International Journal of Web Intelligence and Agent System
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130

 131

recently visited pages, and nearby Webspace structure,
combined with data reduction techniques such as one
based on partial prefetch can potentially yield a
powerful prefetch system with quite accelerated surfing
performance.

7. References

[1] T. Kroeger, D. D. E. Long & J. Mogul, Exploring
the Bounds of Web Latency Reduction from Caching
and Prefetching, Proc. of USENIX Symp. on Internet
Technology and Systems, Monterey, December, 1997,
pp. 319-328.

[2] P. Pirolli and J. E. Pitkow, Distributions of surfers'
paths through the World Wide Web: Empirical
characterizations, Jounral of World Wide Web, v.1-2,
1999, pp. 29-45.

[3] A Non-interfering Deployable Web Prefetching
System, R. Kokku, P. Yalagandula, A. Venkatramani,
M. Dahlin, Proceedings of the USENIX Symposium on
Internet Technologies and Systems, March, 2003, pp.
183-196.

[4] Storage allocation in Web prefetching techniques,
Daniel D. Zeng, Fei-Yue Wang, Sudha Ram,
Proceedings of 4th ACM Conference on Electronic
Commerce (EC-2003), San Diego, California, June,
2003, pp. 264-265.

[5] Yuna Kim, Jong Kim. Web Prefetching Using
Displayed-Based Prediction. IEEE/WIC International
Conference on Web Intelligence (WI'03), Halifax,
Canada, October, 2003. pp. 486-489.

[6] M. Frans Kaashoek, Tom Pinckney, and Joshua A.
Tauber, Dynamic Documents: Extensibility and
Adaptability in the WWW, http://www.pdos.lcs.mit.
edu/papers/www94.html.

[7] Javed I. Khan, Qingping Tao, Partial Prefetch for
Faster Surfing in Composite Hypermedia, the 3rd
USENIX Symposium on Internet Technologies
USITS’01, San Francisco, March, 2001, pp13-24.

 [8] Javed I. Khan, Qingping Tao, Prefetch Scheduling
for Composite Hypermedia, Proceedings of IEEE
International Conference on Communications
(ICC2001), Finland, June, 2001, pp. 768-773.

 [9] Brian D. Davison, Predicting Web Actions from
HTML Content, In Proceedings of the The Thirteenth
ACM Conference on Hypertext and Hypermedia
(HT'02), College Park, MD, June, 2002, pp159-168.

