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Abstract 
The paper explores how the structure of Webspace and the reading pattern of the surfer affect Web prefetch. We have 
conducted a series of experiments based on a new prefetch proxy and studied the prefetch performance on several 
dominant hyperspace structures including chain, tree, and complete graph sub-structures. The study assesses the 
system’s responsiveness and the excess prefetching for various user interaction duration, surfing and prefetch 
sequences.  The results show that the knowledge about the structure of Webspace can be used for intelligent 
prefetching. The study also offers some interesting insight for authors on how to design a prefetch friendly collection 
for increasing site responsiveness. 
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1. Introduction 

For quite a few years, Web researchers have begun to 
explore prefetching as a potential accelerating 
technique [1, 2, 3, 4, 5] for web surfing. Prefetching has 
played a key role in hyper accelerating CPU systems. 
However, it is yet to meet similar level of success in 
web surfing. Web prefetch often creates excessive 
waste. Several studies found only about 2% of the 
prefetched data are actually used [6].  It is interesting to 
note that majority of the suggested web prefetching 
schemes resorted to the access frequency as the 
principle beacon to guide their prefetch activities. 
These techniques varied in the recipe for formulating 
the ranking. Unfortunately, only access frequency 
based ranking is recently found to be non-optimal [7].  
While the access frequency remains an important clue, 
but it may not be enough. More innovation in 
techniques for intelligence path prediction and selection 
are required.  

Interestingly, a few recent works can be found that have 
suggested the use of novel information- beyond access 
frequency. In a previous work [8], we suggested 
discerning media types of composite hypermedia- while 
selecting prefetch path. Most modern pages now 
contain embedded entities such as banners, Java 
applets, flash presentations, etc. with varying rendering 
constraints. This work demonstrated that the prefetch of 
individual components within composite multimedia 
pages could be optimally scheduled based on their 
types and internal rendering dependencies. Indeed for 
some parts, prefetch can be altogether avoided [8] 

without any loss of responsiveness compared to brute 
prefetch. Results showed considerable reduction of 
wasted prefetch (by almost 80%), and additional 
improvement in system responsiveness up to 3.6 times 
for heavily composite collections. Davison [9] 
examined another novel textual similarity-based 
prediction technique. This ingenious technique 
suggested the use of similarity of a model of the user's 
interest to the text in and around the hypertext anchors 
of recently requested Web pages in prefetch path 
selection.  

In this paper, we discuss another potentially interesting 
beacon- the knowledge about hyperspace organization. 
A Web system is a conduit of communication between 
the two principal parties – the content developer and the 
content reader. The intermediate components – the 
server, the browser, the cache and the proxy-- all works 
as a mere facilitator in this communication. It seems 
therefore almost natural that the prefetch performance 
should be strongly dependent on the behavior of these 
two principals.  This means, on one hand, the nature 
and organization of the content and on the other hand, 
the reading and interaction style of the reader should 
have an important impact on the prefetch performance. 
Interestingly, no previous study has focused on either. 
The intent of this paper is to shed some lights in this 
interesting void.  

There are two related questions that naturally arise from 
the proposition.  Is there any regular structure in the 
organization of the Web collection? Secondly, even if 
there is one, is it possible to exploit such structural 
information? In this paper, along with a performance 
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study, we will discuss both. The paper is organized in 
the following way. Section 2 first presents a discussion 
on the general organization of the Webspace and 
explains the existence of dominant regular structures. 
Section 3 then focuses on the user access and 
interaction patterns. Section 4 then presents the 
architecture of a client side proxy based on prefetch 
system that we have implemented for this study. 
Finally, section 5 presents the performance. 

2. Organization of Webspace 

Web pages are becoming more and more sophisticated. 
Web designers are eager to spend serious efforts to 
develop aesthetically appealing pages and intuitive and 
friendly Web interfaces. However, currently there is 
very little handle available by which they can improve 
or affect the performance (other than reducing the 
graphics file sizes). Yet the organization of Web 
structure can have tremendous impact on prefetching 
performance. However, any such provisioning would 
require a formalism to describe Webspace organization. 
This is not trivial. Current Web contents come in 
various complex organizations. Web sites generally 
contain document collections. A collection can be 
viewed as well connected group of Web objects 
generally associated by some abstract theme. At first 
glace it seems collections are quite irregular. However, 
interestingly an analysis of recent Web pages seems to 
suggest that though ideal regular patterns seldom 
appear in the hyperlink graph representing the link 
structure of a collection but, a significant sub-graph 
tends to conform towards few regular structures.  

In our modeling process, we therefore defined a 
concept called the Dominant Pattern Graph (DPG) of 
a collection.   If a hyperlink graph is pruned to it’s 
principally used links this pruning tends to provide a 
few regular graph patterns. We call it dominant pattern. 
The principality of hyperlinks can be determined from 
the design time specification by author or by frequency 
sorting. We easily found several major dominant 
patterns in massive number of collections.  Below are 
some examples.  

One common form of DPG is chain. For web-based 
photo albums, slides show, PDF documents, multi-page 
forms (however, which are static), Web-based 
examinations & quiz forms on each page, we typically 
click “Next” to move on. The surfer seems to be 
moving though a form of sequential chains. One of its 
features is that one Web page only includes one 
principal hyperlink. Only one Web document needs to 
be prefetched each time. Fig. 1(a) shows an example of 
photo album from CNN® news sites. This structure is 
now very common in the Web. We could find albums 

in hundreds of major news sites. Note that the page has 
other links as well.  However, by conscious design, the 
author keeps only one dominant link. Also typical 
surfers do discover this specific organization. With 
their familiarity with the interface construct of ‘virtual 
album’, surfers tend to follow the chain as intended. 

Another frequently found DPG we encountered is tree. 
Tree structure emerges in the central organization of 
complex portals.  Also, it can be commonly found in 
the DPG of e-books, catalogues, directories, “Help” and 
“FAQ” pages. Each Web page includes its own 
hyperlinks to a set of child pages. Meanwhile, it is 
either a direct or indirect child page of the main page.  
Web page in Fig. 1(b) shows an example. It is a 
Navigable Map. The dominant links are the direction 
and the zoom level selectors. The direction navigators 
form tree. A tree may have many brunches. But an 
interface designer can often predictably guide readers 
towards certain brunches than others by design, and 
thus can reduce the branching factor of the dominant 
tree.    

Another common dominant pattern we found is the 
complete sub-graph. A huge number of portal pages, 
particularly with sidebar and menu based organizations, 
show dominant patters in the form of a fully connected 
sub graph. Most online pages, particularly for e-books 
and online shops, with a common navigation side-bar 
or top-bar tends fall into this category of organization. 
Readers can easily move back and forth through any of 
the Web pages within the collection, no matter what the 
current page is. Each Web page is connected with each 
other. We consider this type of organization as the 
complete graph pattern. Fig. 1(c) shows an example for 
online encyclopedia with a dominant complete sub 
graph pattern. Also, in Fig. 1(b) the zoom levels forms 
a complete sub-graph.  

In our study, we also found many other somewhat 
complex but regular patterns. An interesting one is a 
combination of complete graph sub-sections organized 
as hierarchical tree. Fig. 1(d) shows a typical example 
from the Kent State University’s front portal. Each tab 
button leads to a new sub-collection. Each sub-
collection has separate complete sub-graphs. This 
pattern appears with hierarchical table of contents, and 
each subgroup’s table of content appearing in all pages 
within the subgroup. This organization is quite common 
in many large and deep portals (typically corporate) 
designed to support multiple user groups who access a 
site from different perspectives. Therefore, we include a 
forth set called “a tree with complete core” in our study.  

Though, we found other more complex dominant 
patterns, in this paper, we will focus on the above 
explained four DPGs namely 1) Chain, 2) Tree, 3) 
Complete graph, and 4) Tree with core graph. 
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     Fig. 1(a) An Example of Chain in Photo Album. The next and previous buttons represent the dominant links 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Fig. 1(b) An Example of Tree in Yahoo Map Navigation. The navigation buttons provide a dominant tree 
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Fig. 1(c) An Example of Complete Graph. The links “A”, “B”, “C”  etc. appear in all the pages 
 
 

 

 
 

     Fig. 1(d) An Example of Tree with Core Graph. The Tabs take to another sent of complete graph sub menu 
 



 
Published in the  
International Journal of Web Intelligence and Agent System  
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130 

 121

3. User Reading Behaviors  

The modeling of user reading pattern is also nontrivial. 
There are several complex factors. Different reader has 
different text reading speed. It also depends on the 
content type. Most Web pages found in state-of-the-art 
sites today not only contain a simple parent HTML file 
with few embedded images. Pages served by modern 
servers today are complex and composite and contains 
embedded entities such as banners, Java applets, flash 
presentations, etc. with varying rendering constraints, 
and bytes per second viewing time. They generate 
variety of experiences beyond simple text reading. 
Also, various readers may have different psychological 
pattern guiding their browsing habit. For example, in 
the case of reading an online e-book, different readers 
view them in different surfing sequence. After finishing 
reading the instruction for chapter 1, some readers may 
continue reading section 1 of chapter 1, and other may 
skip to the instruction for chapter 2. Different answers 
will certainly result in different performance results for 
prefetching.  

The detail modeling of the user behavior is quite 
complex. However, the goal of this study was to 
capture the essence. Therefore we limited the study on 
two core parameters-- 1) relative interaction time; 2) 
surfing sequence as elements of user interaction habit. 
Interaction time is defined as the time a reader spends 
on a certain page in the collection. It is the viewing 
duration or the interaction time between the events a 
user receives a requested page and sends out the second 
request. For the purpose of analyzing the prefetching 
performance, we call it interaction interval, and 
normalized it with respect to the entropy of the page in 
bytes/sec. This notion allows us to be more general than 
using just the reading time. The interaction time can be 
the time spent in watching an animation, in listening to 
a sound insert, or even in filling up a form. Usually, the 
more time readers spend on each Web page, the more 
Web pages can be acquired by prefetching.  

The surfing sequence is a path of Web pages through 
which the user surfs. Typically the possible range of 
surfing sequences a surfer can follow is bounded by the 
design of the collection.  The designer can further 
encourage surfer to follow certain sequences over 
others by tuning the layout and placement of the links. 
We investigated the performance for selected major 
patterns of surfing paths based on the graph type. The 
choices however, are related to the original DPG 
organization of the document.  Therefore, these will be 
explained along with the DPG experiments.   

4. Recording Time for Implement Event 

4.1 System Setup 
For this experiment we developed an in-house 
“organization aware” prefetch capable Proxy, and a 
script driven client Browser. The proxy can be 
collocated with a surfing client, or placed at slightly 
deeper egress point serving multiple clients. In our 
setup, we used the later. For performance analysis we 
inserted time tracing code inside the Proxy and the 
Browser. We recorded time for all events happening at 
the client and the proxy as per the following event 
model. 

  
4.2 Event Model & Logging 
As can be seen in the model, prefetch improves the 
response time in two ways. Fig. 2(a) shows the fully 
folded prefetching (FFP) and Fig. 2(b) shows the case 
of partially folded prefetching (PFP). We assume that a 
user wants to view Web page N1, which contains two 
hyperlinks to Web page N11 and N12. After finishing 
reading N1, it goes through N11, which has a hyperlink 
to Web page N111. Cn represents recording time on the 
client side, Pn represents recording time on the proxy 
side, and Sn is recording time on the server side. 

After the proxy receives a request from the client (at 
P1), it parses the request message for the first document 
N1 (P2). The first request arrives with cold cache. It 
checks the cache directory and finds that there is no 
cached file for N1. So it establishes a connection to the 
server (P3). After getting response back from the server 
(P4), it sends N1 back to the client (P5). Meanwhile, 
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C1, C3:         Client sends a request
C2, C4:         Client gets a response
P1, P10:        Proxy receives a client’s request 
P2, P11:        Proxy parses the request message
P3:  No file in cache, send request to the server 
P4, P8, P9:   Proxy gets Server ‘s reply
P5, P12:       Proxy sends the reply to Client 
P6, P13:       Proxy extracts the first hyperlink      

and sends a request to Server 
P7:  Proxy extracts the second 

hyperlink and sends a request to Server 
S1, S3, S5, S7:   

Server receives a Proxy’s request 
S2, S4, S6:     Server sends a reply to Proxy 

Parsing Time = P2 – P1 = P11 – P10
Cache Look up Time = P3 – P2 = P11 –P10
Response Time = P5 – P1 = P12 –P10
Extracting Time = P6 – P5 = P13 – P12
Interaction Interval  = C3 – C2 
Reading and fetching Time = S2 – S1

Fig. 2(a) Events Definitions and Time Distribution for  
Fully Folded Prefetching (FFP) 
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the proxy extracts two hyperlinks to document N11 and 
N12 and prefetches them (P6 and P7) according to their 
priorities.   

The proxy receives the server’s replies (at P8 and P9). 
At C2, the client gets N1 and begins interaction. On the 

proxy side, we call the difference between value of P5 
and P10 as interaction interval. After the proxy receives 
the second request from the client (P10), N11 is parsed 
(P11). In case of FFP (Fig-2(a)) N11 is already in proxy 
cache before the request for N11 arrives. By checking 
the cache directory, it realizes that document N11 has 
already been prefetched (P11). N11 can be immediately 
returned to the client (P12). Then the proxy continues 
to extract the hyperlink N111, which is embedded in 
document N11, and prefetches it from the server. In 
PFP (Fig. 2(b)), N11 is not yet in the cache although 
request for it is already underway. Fig. 2(b) illustrates 
the case. When the prefetch mechanism is turned off, 
then all documents are fetched using cold cache 
method. This is similar to the case of getting N1. We 
also allow passive caching to be disabled. When the 
passive caching is turned off then a document is 
removed from the proxy cache immediately after each 
time it is served. 

4.3 Pattern Language 
We also developed a set of reference collections with 
various organizations. This was performed by first 
generating a set of node documents each with a 
specified payload sizes. These were then linked in 
various ways as per the desired test pattern types.  

Each hyperlink that belonged to the dominant pattern 
edge was given an additional attribute. It identified the 

hyperlink within the dominant pattern graph. We 
adopted a simple marking scheme as following. 

For example, for Chain, we used hyperlink attribute 
makers <PATTERN=CHAIN.PREVIOUS>   
<PATTERN= CHAIN.NEXT> to identify the two 
dominant links. For Tree, the children links were 
marked with rank as <PATTERN=TREE.CHILD.n>. 
For Complete Graph, we ranked them as 
<PATTERN=FULL.SIBLING.n> to identify ordered 
siblings. For Tree with Complete Core, we ranked them 
as <PATTERN=TC.SIBLING.m>, and 
<PATTERN=TC.CHILD.n>, for identifying links to 
sibling and links to child sets respectively.  We also 
provisioned an attribute marker 
<PATTERN=NOPREFETCH> to explicitly halt 
prefetching.  

We then programmed the prefetch proxy to follow 
various prefetch sequences based on the dominant 
pattern markers found in the prefetched pages and the 
surfing sequence selected by the experimenter. 

5. Performance Results Analysis 

We evaluated a large number of collections with 
various organizations and various payloads. Even 
within a dominant pattern graph class we tested 
instances with large number of sizes. Given the space 
of this paper, we only include results from the specific 
but representative cases.  

The objective of any prefetch system is to reduce the 
user waiting time and increase systems responsiveness. 
The main cost factor is the wasted prefetch- i.e. the data 
fetched but never used.  We present the impact on both 
the performance measures: 1) response time; 2) the 
amount of data transfer.  

The performance for response time was evaluated by 
the responsiveness. We define lag-time as the time the 
users have to wait after clicking a hyperlink. (Ci-Ci-1 ), 
where i is even. Relative responsiveness is the ratio of 
cumulative lag time experienced with active 
prefetching to that without any prefetching. (Ci-Ci-1 ), 
where i is odd is the interaction time.  

The performance for data transfer was evaluated by 
recording the fetched data volumes with and without 
prefetch enabled. We calculated the ratio to show the 
relative overhead. Finally, for each experiment we also 
varied the interaction interval. We chose 5 seconds, 10 
seconds, 15 seconds, 20 seconds, and 25 seconds as 
five different groups of interaction interval.  
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C1, C3:         Client sends a request
C2, C4:         Client gets a response
P1, P8:           Proxy receives a Client’s request 
P2, P9: v       Proxy parses the request message
P3:              No file in cache, send request to 
the server 
P4, P10, P13:     Proxy gets the server ‘s reply
P5, P11:  Proxy sends the reply to Client 
P6, P12:  Proxy extracts the first hyperlink 
and sends a request to Server 
P7:  Proxy extracts the second 
hyperlink and sends a request to Server
S1, S3, S5, S7: Server receives a Proxy’s 
request 
S2, S4, S6:   Server sends a reply to Proxy 

Parsing Time = P2 – P1 = P9 – P8
Cache Look up Time = P3 – P2 = P10 – P9
Response Time = P5 – P1 = P11 – P8
Extracting Time = P6 – P5 = P12 – P11
Interaction Interval  = C3 – C2 
Reading and fetching Time = S2 – S1 

Fig. 2(b) Events Definitions and Time Distribution for
Partially Folded Prefetching 
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Fig. 3 A Chain, Two Full Trees, a Path in Tree, Two Complete Graphs, and a Tree with Core Graph
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5.1 Chain 
Fig. 3(a) shows a sample test hyper graph for Chain. 
Here the nodes are connected in a sequence. N1 is the 
first view object. In a chain only one prefetch sequence 
is logical. For surfing sequence however, we conducted 
two experiments. Half sequence reading and full 
sequence reading. In the half sequence reading for the 
above graph the surfer would only read N1, N2, and 
N3; in full sequence reading, the surfer would visit 
through N1, N2, N3, N4, N5, and N6. 

1). Response Time Analysis: 

The performance for response time in chain is shown in 
Table 6 and Fig. 4. For half sequence reading the 
maximum improvement in responsiveness we observed 
is about 1.86 times. In full sequence reading of all the 
documents, the responsiveness improved about 4.56 
times. Actually, the more documents the surfer views, 
the more improvement of responsiveness performance 
we can acquire, since we can view all documents as 
prefetched except for N1. We found that the system can 
be designed so that the responsiveness is not affected 
by interaction interval. The minimum interaction 
interval can guarantee that one Web document could be 
prefetched.  

2) Data Volume Analysis: 

The performance for data volume in chain is shown in 
Table 7 and Fig. 5. When the surfing sequence is N1, 
N2, and N3, the maximum amount of data is 4 units. 
Compared to the data volume without prefetching, only 
one extra unit data volume was increased. If we view 
all 6 documents, 6 units of data volume will be 
transferred and no extra amount of data is produced. So, 
whatever the surfing sequence is, the maximum extra 
data volume is one unit. 

 
5.2 Analysis of Tree   

Fig. 4 Performance for Response Time in a Chain and a Tree with 
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For tree experiment we generated collections with 
varying heights and breadths. Two examples are 
shown. In Fig. 3(b), 13 nodes are organized into a tree 
with three levels (height H equals 3). Each of N0, N1, 
N2, N3, contains three hyperlinks. The branch factor 
(BF) equals 3. In Fig. 3(c), height also equals 3, but 
branch factor is 5. Each of N0, N1, N2, N3, N4 and N5 

contains five hyperlinks.  We considered two types of 
tree reading 1) full tree reading and 2) a path in a tree 
reading. Unlike chain, a tree can be surfed in several 
orders. We used two prefetching sequences 1) Left first 
and 2) Right First. The corresponding node sequences 
are shown in table 1. 

5.2.1 Full Tree Reading 
To test various surfing behavior of the full tree reading 
we let the surfer use three different surfing sequences: 
1) Depth First (α), 2) Breadth First (β), and 3) Random 
Connected Walk (γ). Except for the Random Connected 
Walk, the both depth first and breadth first ordered the 
nodes left to right. We repeated the experiment only for 
Canonical cases. Symmetrical cases were not 
considered. The sample node sequences for various 
runs for the sample graph are shown in table 2. 

             Prefetching Sequence  
Type 

 
Node 

       Left First      Right First 

N0 N1,N2,N3,N4,N5 N5,N4,N3,N2,N1 
  
 

N1 N11,N12,N13,N14,N15 N15,N14,N13,N12,N11

H = 3 N2 N21,N22,N23,N24,N25 N25,N24,N23,N22,N21

BF = 5 N3 N31,N32,N33,N34,N35 N35,N34,N33,N32,N31

N4 N41,N42,N43,N44,N45 N45,N44,N43,N42,N41 

N5 N51,N52,N53,N54,N55 N55,N54,N53,N52,N51

N0 N1,N2,N3 N3,N2,N1  
H =3 

N1 N11,N12,N13 N13,N12,N11 

BF = 3 
N2 N21,N22,N23 N23,N22,N21 

 N3 N31,N32,N33 N33,N32,N31 

 

Table 1 Lists of Prefetching Sequences in a Full Tree 

1). Response Time Analysis: 

The performances for response time in a full tree with 
Left First and Right First as  prefetching  sequence are  
shown in Table 6, Fig. 6 and Fig. 7 respectively. 

Surfing sequence  
Type

  Depth First Breadth First Random 
 
 
 
 
 
 
 
H = 3 
BF = 5
 
 

 

N0, N1, N11, N12

N13, N14, N15, 

N2, N21, N22, 

N23, N24, N25, 

N3, N31, N32, 

N33, N34, N35, 

N4, N41, N42, 

N43, N44, N45, 

N5, N51, N52, 

N53, N54, N55 

 

N0, N1, N2, N3, 

N4, N5, N11, 

N12, N13, N14, 

N15, N21, N22, 

N23, N24, N25, 

N31, N32, N33, 

N34, N35, N41, 

N42, N43, N44, 

N45, N51, N52, 

N53, N54, N55 

 

N0, N4, N41, N42

N2, N21, N22, 

N23, N24, N25, 

N3, N33, N31, 

N32, N34, N35, 

N1, N5, N52, N53

N54, N55, N51, 

N43, N44, N45, 

N11, N12, N13, 

N14, N15 

 
 
 
H = 3 
BF = 3

 

N0, N1, N11, N12

N13,  N2, N21, 

N22, N23, N3, 

N31, N32, N33 

 

N0, N1, N2, N3, 

N11, N12, N13, 

N21, N22, N23, 

N31, N32, N33 

 

N0, N1, N2, N3, 

N11, N12, N13, 

N21, N22, N23, 

N31, N32, N33 

 

Table 2 Lists of Surfing Sequences in a Full Tree  

We observe that the prefetching sequence and surfing 
sequence affect the performance for response time. The 
improvement in responsiveness is the best when we 
compare reading Web documents in Depth First 
manner compared to Breadth First or Random. In Fig. 
6, when prefetching sequence is Left First, The 
responsiveness with Random and Breadth First is up to 
2.4 and 3.7 times less than that with Depth First 
respectively. In Fig. 7, when prefetching sequence is 
Right First, the responsiveness with Random and 
Breadth First is up to 0.6 and 0.7 times less than that 
with Depth First respectively. We also observed that no 
matter what the prefetching sequence is, with the 
branching factor increasing, the impact of prefetching 
performance always increases. In addition, with 
growing interaction interval, the relative responsiveness 

Fig. 5 Performance for Data Volume in a Chain, a Tree  and a Tree  
with Core Graph 
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improves (value decreases) gradually. There seems to 
be an intuitive explanation. The more is the interaction 
interval the more is the scope of effective prefetching. 
It seems it might be possible to determine a matched 
prefetching state where a web page designer might be 
able to space the links while controlling the content 
volume. 2). Data Volume Analysis: 

The performance for data volume in a full tree is shown 
in Table 7 and Fig. 5. Whatever the branching factor is, 
data volume is not affected by the prefetching sequence 
or the surfing sequence. Interaction interval does not 
affect overall data volume. The total amount of 
transferred data is the same as without prefetching. 
However, what matters is the branching. When the 
branching factor is 5, data volume is 31 units; when the 
branching factor is 3, data volume is 13 units. 
Therefore, a case where excessive overload is a concern 
the prefetch proxy should limit the branching factor 
allowable for prefetch. 

  

 
 

5.2.2 Paths in a Tree 
In this set of experiments (Fig. 3(d)) we consider the 
case where the surfer chooses to visit only one path 
from root to leave in a tree. However, we again choose 
three variants.1) Left Path (Path 1), 2) Right Path (Path 
2), and 3) Random Chain Walk (Path 3). For the graph 
shown in Fig. 3(d), in path 1, the surfing sequence is 
N0, N1, N11, N111, and N1111 in order; in path 2, the 
surfing sequence is N0, N1, N12, N122, and N1221; 
and in Path 3 the sample random surfing sequence is 
N0, N2, N22, N222, and N2222. We conducted 
experiment based on two different prefetching 
sequences: 1) Left First (LF) and 2) Right First (RF). 
We adopt the same implementation methods as in the 
experiment with a full tree.  

1). Response Time Analysis: 

The performance for response time in one path in a tree 
reading is shown in Table 6 and Fig. 8. We observe that 
path 1’s responsiveness with Left First prefetching 
sequence is the same as path 3’s one with Right First 
prefetching sequence.  

We can also find that path 3’s responsiveness with Left 
First prefetching sequence is the same as path 1’s 
responsiveness with Right First prefetching sequence. 
If interaction interval is 5 seconds, the response time 
with prefetching is the same as that without 
prefetching, since the next page we will move through 
is not a prefetched document. However, whatever 
prefetching sequence is, either Left First or Right First, 
path 2 always has the same change for the 
responsiveness value.  

When prefetching sequence is Left First, the 
prefetching performance in path 1 is better than that in 
path 2 and path 3. The responsiveness with path 2 and 
path 3 is up to 2 and 4 times less than that with path 1 
respectively. With growing interaction interval, the 
system responsiveness always increases in a gradual 
fashion for path 1, path 2, and path 3. 

Fig. 6 Performance for Response Time in Tree with Left First (α–
Depth First, β– Breadth First, γ– Random Connected Walk) 
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Fig. 7 Performance for Response Time in Tree with Right First  
(α– Depth First, β– Breadth First, γ– Random Connected Walk) 
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2). Data Volume Analysis: 

The performance for data volume in one path in a tree 
reading is shown in Table 7 and Fig. 9. If interaction 
interval is 5 seconds, path 1’s data volume with Left 
First prefetching sequence is (5 units) same as the path 
3’s one with Right First prefetching sequence. The path 
3’s data volume with Left First prefetching sequence is 
(9 units) same as the part 1’s one with Right First 
prefetching sequence. No matter what prefetching 
sequence path 2 uses, its data volume is 7 units. With 
Left First prefetching sequence, the amount of 
unnecessary data in path 2 and path 3 is up to 40% and 
80% more than that in path 1 respectively. Once it 
reaches 10 seconds, the performance for data volume in 
part 1, part 2, and part 3 are the same. They are all 9 
units no matter what is their prefetching sequence. 

 

5.3 Complete Graph 
A complete graph varies only with respect to the size of 
the clique. Two examples respectively with 5 and 9 
hyperlinks are shown in Fig. 3. We consider the case of 
clockwise prefetch sequence (anticlockwise prefetch 
creates symmetrical cases). The nodes in prefetch 
sequence are shown in Table 3. With respect to it, we 
consider three different types of surfing sequences. 

These are 1) Clockwise (CW), 2) Counter Clockwise 
(CCW), and 3) Random Walk (RW). These walks are 
shown in Table 4. 

1). Response Time Analysis: 

The performance for response time in a complete graph 
is shown in Table 6 and Fig. 10. As expected, no matter 
how many nodes they have, the prefetching 
performance in clock matched reading direction is 
always better than that in counter clock matched case. 

The prefetching performance in random reading 
direction is in between clockwise and in counter 
clockwise directions. The responsiveness with Random 
and Counter Clockwise is up to 5.3 and 10.3 times less 
than that with CW respectively. With growing number 
of nodes, the impact of prefetching performance 
increases. With growing interaction interval, the system 
responsiveness increases in a gradual fashion. 

2). Data Volume Analysis: 

The performance for data volume in complete graph is 
shown in Table 7 and Fig. 11. Different surfing 
sequences result in different performance of data 
volume. The amount of data in matched sequence 
(clockwise) reading direction is always less than that in 
reversed sequence (counter clockwise). We again note 
that the data volume for any reading order always 
increases gradually when interaction interval increases 
gradually. All of them produce a lot of extra amount of 
data compared to the amount of transferred data 
without prefetching. The more nodes we move through, 
the more extra amount of data is produced. 

           Prefetching Sequence  Total     
Nodes 

 
Node                     Clockwise 

 N1 N2,N3,N4,N5,N6 

 N2 N3,N4,N5,N6,N1 

        6 N3 N4,N5,N6,N1,N2 

N4 N5,N6,N1,N2,N3 

N5 N6,N1,N2,N3,N4  

N6 N1,N2,N3,N4,N5 

N1 N2,N3,N4,N5,N6,N7,N8,N9,N10 
 

N2 N3,N4,N5,N6,N7,N8,N9,N10,N1 

N3 N4,N5,N6,N7,N8,N9,N10,N1,N2 

N4 N5,N6,N7,N8,N9,N10,N1,N2,N3 

       10 

N5 N6,N7,N8,N9,N10,N1,N2,N3,N4 

 Fig. 8 Performance for Response Time in Paths of a Tree 
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0.00

2.00

4.00

6.00

8.00

10.00

3 5 10 15 20 25

Interaction Interval

D
at

a 
vo

lu
m

e 
(u

ni
t) Path 1(LF) &

Path 3(RF)

Path 2(LF &
RF)

Path 1(RF) &
Path 3(LF)



 
Published in the  
International Journal of Web Intelligence and Agent System  
IOS Press, Netherlands, vol.3, No.2, 2005, pp117-130 

 127

N6 N7,N8,N9,N10,N1,N2,N3,N4,N5 

N7 N8,N9,N10,N1,N2,N3,N4,N5,N6 

N8 N9,N10,N1,N2,N3,N4,N5,N6,N7 

N9 N10,N1,N2,N3,N4,N5,N6,N7,N8 

 N10 N1,N2,N3,N4,N5,N6,N7,N8,N9 

 

          Table 3 Lists of Prefetching Sequences in a Complete Graph 

 

                        Surfing sequence  
Total 
Nodes Clockwise Counter 

Clockwise Random Walk

 
6 

N1,N2,N3,N4, 

N5,N6 

N1,N6,N5,N4, 

N3,N2 

N1,N4,N6,N2, 

N5,N3 

 
 
10 

N1,N2,N3,N4, 

N5N6,N7,N8, 

N9,N10 

N1,N10,N9,N8, 

N7,N6,N5,N4, 

N3,N2 

N1,N6,N3,N5, 

N9,N7,N2,N8, 

N4,N10 

 

          Table 4 Lists of Surfing sequences in a Graph 

 
5.4 Tree with Core Graph 
Fig. 3(g) shows an example of test tree with core graph. 
Here one core consists of N0, N1, N2, and N3. We refer 
to it as core 1. Another core consists of N4, N5, and 
N6. We refer to it as core 2.  Each node is a parent in 
the core. It has its own children. For instance, N0 is a 
member of core 1. Meanwhile, it is the parent of three 
children, N4, N5, and N6, which are members of core 
2. Core Set means all members of the core are fully 
connected. Child Set is connected via a tree structure 
with the core. With respect to this DPG, two types of 
prefetching sequences are selected. We call them 1) 

Core Set First and 2) Child Set First.  We use one 
Depth First surfing sequence here (shown in Table 5). 

1). Response Time Analysis: 

The performance for response time in Tree with Core is 
shown in Table 6 and Fig. 4.  With interaction interval 
increased, the value of responsiveness decreases 
gradually for both Core Set First and Child Set First. 
However, if we use Child Set First as prefetching 
sequence, its performance improvement for 
responsiveness is better than Core Set First. That means 
Child Set First prefetch closely matches the Depth First 
surfing sequence. The responsiveness with Core Set 
First is up to 2 times less than that with Child Set First. 

2). Data Volume Analysis: 

The performance for response time in Tree with Core is 
shown in Table 7 and Fig. 5. If Child Set First is 
selected as prefetching sequence, its performance 
improvement for data volume is better than Core Set 
First. The amount of unnecessary data with Core Set 
First is up to 43% more than that with Child Set First. 

With interaction interval increased, the data volume 
increases gradually for both of them, and the extra 
amount of data also increase gradually. 

 

6. Conclusions and Future Works 

First generation of prefetch technique suggested 
schemes dependant primarily on “frequency” of access 
analysis. In this paper, we presented an study on the 
impact of web-space organization and corresponding 
surfing sequences on prefetch. It seems to suggest that 
smarter prefetching techniques can be developed if the 
structure of Webspace and user reading behavior can 
also be brought into consideration.  

Fig. 10 Performance for Response Time in Complete Graph 
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Fig. 11 Performance for Data Volume in Complete Graph 
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We have observed the existence of dominant pattern 
graphs in the Webspace particularly in large 
collections. The paper presents experiments on several 
types of abstract yet commonly occurring dominant 
patterns in hyperspace including chain, tree, complete 
graph, and complex tree with core. Here is the brief 
summary of the overall findings. For the cases studied 
we found that compared to a random prefetch system 
(organization unaware), the response time of a matched 
system (where the prefetch system can take advantage 
of the Webspace organization) can be 1.6 - 6.3 times 
faster. Not only that, it can also dramatically bring 
down the amount of unnecessary prefetch down by a 
factor of 1.8 - 2.0 or more. Also, in the worst case, a 
completely mismatched system’s response time can be 
about 1.7 - 11.3 times slower and can result in 1.3 - 1.4 

times more unnecessary data transfer than a well 
matched system.  

6.1 Author Driven Organization 
Now clearly the question is if such a scheme realizable? 
User interest is probably their. With the maturity of 
Web content design industry, now much interest exists 
in the design of aesthetically as well as fast accessible 
Web pages. Indeed, we suspect the interest is probably 
much ahead than what current technology supports.  

 

 

 

 
                                 Responsiveness  

                    Organization Type   3 s   5 s   10 s   15 s   20 s   25 s 
                 3 Nodes 0.62 0.35 0.35 0.35 0.35 0.35  

Chain                  6 Nodes 0.50 0.18 0.18 0.18 0.18 0.18 
 
Depth First 

 
 

0.23 0.15 0.08 0.08 0.08 

 
Breadth First 

 
 

0.69 0.38 0.08 0.08 0.08 

 
 
BF=3 

 
Random 

 0.70 0.30 0.08 0.08 0.08 

 
Depth First 

 0.18 0.15 0.10 0.08 0.03 

 
Breadth First 

 0.81 0.61 0.42 0.23 0.03 

 
 
 
Full Tree 

 
 
 
BF=5 

 
Random 

 0.58 0.32 0.16 0.10 0.03 

 
Left First 

0.60 0.20 0.20 0.20 0.20 0.20  
Path 1 

 
Right First 

1.0 1.0 0.20 0.20 0.20 0.20 

 
Left First 

0.87 0.60 0.20 0.20 0.20 0.20  
Path 2 

 
Right First 

0.87 0.60 0.20 0.20 0.20 0.20 

 
Left First 

1.0 1.0 0.20 0.20 0.20 0.20 

 

 

 

 

 

 

Tree 

 
 
 
 
 
Paths in  
Tree 

 
Path 3 

 
Right First 

0.60 0.20 0.20 0.20 0.20 0.20 

 
Clockwise 

0.26 0.17 0.17 0.17 0.17 0.17 

 
Counter Clockwise 

0.90 0.83 0.67 0.50 0.33 0.17 

 
 
 
6 Notes   

 
Random 

0.70 0.50 0.33 0.17 0.17 0.17 

 
Clockwise 

0.46 0.10 0.10 0.10 0.10 0.10 

 
Counter Clockwise 

0.94 0.90 0.80 0.70 0.60 0.50 

 
 
 
 
 
Complete 
Graph   

 
 
10 Notes 

 
Random 

0.70 0.50 0.40 0.20 0.20 0.10 

                     
                    Child Set First 

0.67 0.67 0.33 0.20 0.17 0.17 
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Tree with  
Core Graph 

                     
                    Core Set First 

0.80 0.80 0.73 0.60 0.33 0.17 

  
                      Table 6 the Performance for Response Time in All Organization Types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 Data Volume  

                    Organization Type   3 s   5 s   10 s   15 s   20 s   25 s 
                   3 Notes 3 4 4 4 4 4  

Chain                    6 Notes 6 6 6 6 6 6 
 
Depth First 

13 13 13 13 13 13 

 
Breadth First 

13 13 13 13 13 13 

 
 
 
BF=3 

 
Random 

13 13 13 13 13 13 

 
Depth First 

31 31 31 31 31 31 

 
Breadth First 

31 31 31 31 31 31 

 
 
 
Full Tree 

 
 
 
BF=5 

 
Random 

31 31 31 31 31 31 

 
Left First 

5 5 9 9 9 9  
Path 1 

 
Right First 

5 9 9 9 9 9 

 
Left First 

5 7 9 9 9 9  
Path 2 

 
Right First 

5 7 9 9 9 9 

 
Left First 

5 9 9 9 9 9 

 

 

 

 

 

 

Tree 
 
 
 
 
 
Paths in  
Tree 

 
Path 3 

 
Right First 

5 5 9 9 9 9 

 
Clockwise 

6 6 10 15 20 25 

 
Counter Clockwise 

6 12 15 18 25 25 

 
 
 
6 Notes   

 
Random 

6 8 12 16 18 25 

 
Clockwise 

10 10 17 23 33 41 

 
Counter Clockwise 

10 13 20 27 36 43 

 
 
 
 
 
Complete 
Graph   

 
 
10 Notes 

 
Random 

10 14 18 27 35 43 

                     19 19 20 23 28 33 
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                    Child Set First Tree with  
Core Graph                      

                    Core Set First 
22 22 27 33 37 43 

 
Table 7 the Performance for Data Volume in All Organization Types 

 
 

 

 

 

 

 

 

 

 

The main technological hindrance is that current HTTP 
or HTML has no mechanism, which designers can use 
to author a prefetch friendly collection. Currently there 
is no standard technique to express a hyperspace 
pattern. However, the simple hyperlink attribute 
markers we have used for the sake of this experiment 
suggest that a marking language can easily be 
developed to provision content driven pattern 
specification. Any trivial extension of it, along with an 

“organization aware” browser or proxy that can support 
some prefetch sequencing policy, can significantly 
accelerate Web surfing at ease in a prefetch-friendly 
collection. 

6.2 Authoring Tools 
Indeed, authoring tools can also be easily enhanced that 
will encourage content developer to mark at least one or 
two dominant hyperlink(s) among the links s/he 
embeds. The efforts should not be more than adding 
alternate text for embedded images. Quite often, it is 
already known by the content author. Content author 
generally follows a premeditated theme based mental 
organization to hyperlink the collection.  Also, the 
marking can be automatically generated by many 
converters (such as PowerPoint® to HTML Converter). 

6.3 Finding Patterns in Legacy HTML 
Interestingly, dominant organization of a collection can 
often be reverse engineered at post production stage 
(such as by log or frequency analysis). A pre-existing 
collection can be potentially made prefetch friendly 
with some simple automated document analysis in 
many special cases.  For example, it is relatively easy to 
identify chains. Almost out of any collection, a 
dominant chain can be discovered by simple 
modification of several currently available server tools. 
Prefetch chain always increases surfing responsiveness 
and it does not fetch any extra load. Also, the 
documents involved in a dominant pattern tend to be 
co-located in a single server.  For example, a complete 
graph cluster is generally placed in single directory.   

6.4 Other Issues 
An interesting advance problem will be to extract 
pattern information when the hyperspace spans multiple 
servers and multiple collections. Perhaps an HTTP 
extension can used to see if the dominant pattern can be 
found. We suspect reading time will show high 
correlation with media type and content. Additional 
study can be performed to determine the extents.  

The beacon suggested here can be combined with other 
techniques currently known. An approach based on 
intelligent analysis of surfer’s bookmarks, history of 

     Prefetching Sequence  
Node 

Child Set  
First 

Core Set  
First 

Surfing   
Sequence 
(Depth First) 

N0 N1,N2,N3,N5, 
N4,N6 

N1,N2,N3,N5, 
N4,N6 

N1 

 
N11,N12,N2, 
N3, N0 
 

N2,N3,N0,N11, 
N12 

N2 

 
N21,N22,N3, 
N0,N1 
 

N3,N0,N1,N21, 
N22 

N3 

 
N31,N32,N0, 
N1,N2 
 

N0,N1,N2,N31, 
N32 

N4 N41,N42,N0, 
N5,N6 

N5,N6,N41, 
N42,N0 

N5 N51,N52,N0, 
N6,N4 

N6,N4,N51, 
N52,N0 

N6 N61,N62,N0, 
N4,N5 

N4,N5,N61, 
N62,N0 

 
    
 
 
 
 
 
 
N0,N4,N41,N42, 

N6,N61,N62,N5, 

N51,N52,N1,N11, 

N12,N2,N21,N22, 

N3,N31, N32 

 

Table 5 Lists of Sequences in a Tree with Core Graph 
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recently visited pages, and nearby Webspace structure, 
combined with data reduction techniques such as one 
based on partial prefetch can potentially yield a 
powerful prefetch system with quite accelerated surfing 
performance. 
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