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Abstract

This paper presents a parallel holographic
associative recollection engine for large scale pattern
matching, including the simulation result on 400 node
IBM SP2 cluster. This engine is based on a new
adaptive computing paradigm called
multidimensional holographic associative computing
(MHAC). Unlike any previous associative memory,
MHAC has the unique ability to localize the match on
any dynamically specified zone in the pattern. This
particular paper explores the opportunities to
expedite the digital implementation of MHAC by
using parallel computation targeting large best-
match pattern matching applications. This report
contains results of this investigation beginning from
the fine grain pipe-line parallelism at the instruction
level to the high level algorithmic parallelism.
Consequently the paper demonstrates a potential
parallel architecture of the system. It also presentsa
validation of the proposed design on a simulation
realized on a 400 Node IBM SP2 machine.

Key words: assciative memory, attention, focus,
paralel neuro computing, pattern matching, image
retrieval.

1. Introduction

It has been demonstrated recently by Khan [4] that a
new form of asociative omputing medchanism called
Multidimensional Holographic Associative Memory
(MHAC) posssses me attractive properties which
dramatically extend the recll edion ability of current
neuro computing.

The foremost of these are it’s ability to “focus’. It can

locali ze the associative search on any sub-part of the
example pattern and retrieve a target which is closest

with resped to this <oedfied sub-part. More
interestingly, this localizaion can be spedfied
dynamically during retrieval. In contrast, al current
neural networks (NN), converge to a pattern which is
close to the sample pattern with resped to all the
elements. Oncethe training is over, there is no way of
recasting the focus on any spedfic sub-pattern [3].

Another unique @pability is its aptitude to search
small patterns. If more than 30% (theoretical limit is
50%) hits of a pattern are flipped, most NNs cease to
recognize the pattern. In striking contradt, it has been
demonstrated that armed with “attention”, MHAC
can retrieve a learned pettern just from 10% of the
sample. Essntially, MHAC paves the way for
searching “neall€’ in digita “haystack” [4,5].
MHAC has been derived from a digitd
generalizaion of optical holography [2].
Applications of MHAC: The proposed MHAC model
demonstrates the adaptability and learning ability like
other artificial assciative models. In addtion it
demonstrates important capabilities like search
locdlization or the ability to work with small focus.
The unique abiliti es of MHAC can potentially help an
impressve array of challenging pattern matching
applications such as large scale image processng,
image based objed reaognition, signal processng,
spedral-date volume analysis, function
approximation, classfication based on partia
information, complex control system requiring fast
real-time response, and content-based image retrieval
in massve archives [5].

For example, in Medical diagnostics, a physician may
want to search for a small tumor from a pile of CT-
stack images. Or a doctor may want to search for all
the past cases which would show a spedfic
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deformation in the bone dructure. In satellite
imaging, it can be the search for a tiny target in land
cover images. In spedral data analysis, it can be the
search for a narrow signature pattern into the Fourier
images of vast number of multi-spedral data sets.
Typically such applications require searching into a
massve number of images or digital patterns and the
objeds of focus in the sample are small (5-20% of the
image frame), nor they are predsely definable at the
encoding time (non modell able target). To make the
matter even worse for conventional Neural Networks
(NNs) or Associative Memories (AMs) the target of
search can vary wildly from query to query. MHAC
offers lution to such appli cations.

Parall elization of Neural Moddls. Parallelizaion of
NN architedures has been an extremely active area
of research [9,1,10]. The neeal of parall€ization of
any neural models originates from two application
characteristics. When any network tries to learn a
complex function space the number of neurons in
inner layers grow to accommodate the discriminating
hyperplanes. Also, in such a case neura networks
tend to require more training samples, or more
training iterations before the mmplexity of the
discriminating space propagates and stabili zes. Neal
of paraldizaion becomes more severe when the data
size becomes large. Its complexity grows bah in
terms of memory requirement and exeaution time. For
large and complex applications, the simulation time
of NN dynamics can be &cedalingly large on
sequential machines.

The nedl for paraldizaion is © pressng that NN
methods have been tried on amost every
experimental and commercial parald hardware that
came out in recent times. These include architedures
such as Warp [8], which explaits intensive pipeline
parall elism, Connedion Machine [10], which alows
exploitation of minuscale paraleism, and
Transputers which all ows dynamic reconfiguration of
interconnedions, intuitively useful for irregular net
simulation [7]. A comprehensive survey of the
parall elization efforts of contemporary neural models
can befoundin [9].

Neural networks and aswociative memories are
generally assumed to be naturally parallel. Neura
calculations are performed in small identical units.
Interestingly, despite the apparent distributed nature
of the mputation, the paral€dization of neura
models often have been nontrivial. Severa reasons

attributed to such difficulty. First of all, for many
networks, the cdls are irregularly conneded.
Seandly, athough each cdl tends to use only local
interconnedion and thus local information, but as a
whole the information <ill propagates in a dow
iterative manner through the network. Also hardware
wise, neural cdlular computations appears to be too
fine grained. Like other cdlular modds, MHAC itself
aso dfers me unique dallenges and scopes for
parallelization. This research explores these
challenges and scopes intimately and demonstrates
how a scalabable mapping can be achieved that can
offer near linear scalability.

From the design point of view, in this paper we
focused not only on the iswues related to the wre
algorithm but also we have arefully evaluated the
potential application scenarios and attempted to
derive a pardldizaion scheme which ultimately
asaires optimum paralldizability from the overal
application point of view. The following sedion, first
presents very briefly the holographic model. Then
sedion 3, identifies the paralldizaion strategies. In
sedion 4 and 5 we describe in detail the proposed
schemes to explait parall elism at two levels: (i) at the
level of algorithm, and (ii) at the level of fine grained
operation . Finaly, in sedion 6 we present the
simulation result from an IBM-SP2 implementation
of the proposed model. This paper however, does not
contain the theory of MHAC or its dired applications
derived from its unique abiliti es. Inquisitive reader
may want to consult [4,5,6] for further reading.

2. Holographic Search

2.1 Representation

MHAC represents information as two tire quantity,
the actual measurement and a meta-information
“attention” (or focus) . For example for an image the
pixel value is the measurement. Each pixel may also
take an associated seond meta-quantity representing
the “importance’ of the pixel. Computationally, this
bi-modal information is represented as a
multidimensiond complex number (MCN) spanned in
a hyperspherical space In this s£heme an element of
information is represented as.

[dfijem]
s =)0 Ae”
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Here, @« is the measurement and is mapped onto a

st of phase eements Gjyk in the range of
m=02-1. A, is the metaquantity focus.
Following are the representations of a complete
stimulus pattern and a response pattern:

[dfijejl]
[S']=[Ne’

[dficpﬁl]
[R']=[yie’

2.2 Training and Retrieval

Both the training and retrieval algorithms of MHAC
have been derived from a digital adaptation of the
optical transforms in holography [4,2]. Learning
congtitutes computation of individual complex
associations, and superimposition of the associations
on the holographic substrate. Following equation
describes a reinforcement model of holographic
learning:
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The substrate [X] is stored as a MCN matrix. n isthe
learning constant. The substrate acts as the memory.
The retrieval processis similar to optical convolution.
During recall, an excitatory stimulus pattern [se] is
obtained from the query pattern:
%ng %ng

(D 180l [D 1672
[ST]=[\eT  A%e”

In the event, that this new stimulus resembles closaly
to a priory encoded stimulus, then the corresponding
response pattern is generated with high magnitude.
The decoding operation is performed by computing
the inner product of the excitatory stimulus and the
correlation matrix [X]:

d—lA
(3 105l
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The model treats the measurement component of
information in a fundamentally different way than
any NN. The dements of these vectors are complex
numbers and measurement components are
exponents. A complete theoretical and empirical
analysis of the characteristics of this model is beyond
the scope of this paper, but can be found in [4] and
also will appear in [6].

3. Parallelization Strategies

Operational Scenario: The image patterns (here after
caled stimulus pattern), those will constitute the
search space, are first assigned a small index pattern
(here after called response pattern). The association
between the stimulus pattern and response patterns
are then encoded in the form of a digital holograph.
During the query, a query image pattern and a meta-
mask dencting the object(s) of focus within this
search sample are received. The memory then
performs a single step convolution with the
Holograph. If there is a match with any of the stored
image pattern, the corresponding response pattern
emerges out of this convolution.

Learning: The core computation in this scenario
involves holographic encoding (or training) and
associative retrieval. Training is generally a batch
process. The reinforcement algorithm is also iterative.
The emphasis in training is to increase the
throughput. Here the biggest challenge arises from
the size and number of the patterns. Generally non-
symbolic digital patterns/images are
representationally sparse. For example, In the medical
diagnostics application, we search for a small tumor
in a pile of cross-sectional CT-stack images. Each CT
can be 1024x1024. And cross-sections shot at 2 mm
apart a single patient can mean 500-1000 such
images. It can be satellite image search, where we
would like to find a specific small target from a
massive set of patchwork of high resolution land
cover images. A patchwork may mean 1,000-10,000
color images of resolution 1024x2048x3. Or it can be
spectral data analysis where, after Fourier transform
we are looking for a signature pattern into a series of
multi-spectral images. A single shot can contain 256
spectral channels. MHAC model typically converges
within 5-15 cycles (and is faster converging than
many other NNs). However, for target applications of
the scale mentioned above, it signifies an enormous
computational challenge.

Retrieval: Retrieval may or may not be a batch
process but the turn around time has to be reduced
dramatically to match the demand of many real-time
and near real time applications. There are aso
retrieval situations, where it is often necessary to
match a large number of sample patterns. One such
case is when the recognition requires some form of
dynamic invariant matching. In many cases, there
may not exist an invariant representation (such as
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polar rotational invariant normalization for multi-
object image) resulting into large number of template
matching. Logically compounded high level query
may also generate a large set of low level queries.
Such situations, combined with large size of the
associative memory can easily make the retrieva
process a massive computational task even within the
associative computing paradigm.

Algorithm Level Paralelism: In this paper, our
strategy is to offer solution to both of these phases.
We principally attack the problem of parallelization at
two levels. First isin the level of algorithm. Here we
decompose both the phases into a set of basis
communication and computation fragments. We use
block decomposition of the computation. However,
the reinforcement sub-cycle of the learning algorithm
makes training steps to be intra-dependant. We
present analyss which demonstrates how these
fragments can be paraldized, and optimally
organized in a synergy to perform both the training
and retrieval phasesin most parallel mode.

Instruction Level Parallelism: In the second level we
show, how the operations inside the cells can also be
parallelized to exploit the finer grain of parallelism
inherent in this moddl. Each elementary computation

S —

a L
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h
L
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NG MSR-R
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in MHAC is heavier, asit has to process MCNs. This
is a marked contrast compared to the conventional
NN models. We show two top contending techniques
to paralldize MCN operations, and provide analysis
of their relative merits and demerits.

4. Parallelization at Algorithm Level

4.1 Cels& Interconnection

This section presents the proposed scheme for
exploiting the high leve paraldism inherent in the
algorithm and the application scenario. Fig-1 shows
the interconnection of the computing nodes. The
holographic computation by nature has three
dimensions of dependencies. The units are
correspondingly laid out as a 3-dimensiona grid.
Each association is computed by a stimulus and
response patterns. The stimulus patterns are divided
among the cells along the s-dimension (vertical axis
in Fig-1). The response patterns are divided along the
r-dimension (horizontal axis). These two dimension
makes a frame-plane. One frame-plane handles one
association. Multiple associations can be handled
concurrently by dices of such frame-planes laid
across the association or a-dimension (depth axis).

Fig-1 Holographic Cell Arrangement
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Fig-2 Collective Cellular Communication Forms

4.2 Communication

The operation of MHAC can be decomposed into a
basis set of operation fragments. This basis set has
two computation fragments and six communication
fragments. Following is the complete list: (a) Scatter
Holograph (SH), (b) Scatter Simulus (SS), (c)
Scatter Resporse (SR), (d) Compute Reoolledion
(REC) (&) All Gather Partial Resporse (GPR), (f)
Basic Encode (BE), and (g) Gather Resporse (GR),
and (h) Gather Holograph (GH). A Reinforcement
Encoding requires fragments acde f and h.
Recollection requires fragments a,b,d,e and g.

The Algorithm Levd Comnunication (ALC)
fragments have been designed on top of the following
four Colledive Comrmunication Routines (CCR).
These are (a) Scatter, (b) Gather, (c) Broadcast and
(d) Allgather. All CCRs occur along arow or column
group in the grid. Before Scattering (Fig-2(a)), one of
the nodes initially contains all the array data. After
Scattering each of the cell receives a segment of the
array in order of they rank in the participating row or
column group. The Gathering communication is the
reverse of Scattering. In Allgather every cell receives
the augmented array (Fig-2(b)).

The following notations have been used to describe
the ALCsin termsof CCRs. « (src: group) isused
to signify the row-wide scattering operation among
the group from the source node. « (group: snk)
signifies a gather operation at the sink from the
group. Similarly, T (src.group) or
T (group,snk) denoted a column wide scattering
or gathering operation. We use, < (src, group),
and {J (Src,group) to respectively denote row-
wide and column wide broadcast operations. As
evident, ALCs can be implemented in various ways.

The schemes below specify the most efficient
sequence based on row-major data structure for
holograph and pattern vectors.

Scatter Holograph (SH): The initial holograph is
distributed to the working nodes in the grid as blocks.
This ALC is required for re-training of a holograph,
and during retrieval. It has been implemented as the
following sequence of operations. Operations are
performed according to the order of parenthesis
(superscript T signifies transposition of matrix).

%[How(x: 0y=0x= O)H o (x= Gall)g = HH, ,

Gather Holograph (GH): The scattered holograph
fragments are collected in one node for storage. This
ALC isrequired after the training.

[HHS, = (all:x=0)]" T(x=0x=0,y=0)|=Hq,

Scatter  Stimulus (SS): The stimulus patterns are
distributed to individual nodes. This ALC is required
both for training and retrieval. ThisALC ispresentin
the recursive cores of all holographic operations.
Note, stimulus fragments are never required to
assembl ed together.

[stx=0y=0x=0] - (x=0al] =5,

Scatter Response (SR): The response patterns are
distributed to individual nodes. This ALC is required
both for training and retrieval.

[Ro -~ (x=0y=0y=0]t(y=0al)| =R,

All Gather Partial Response (GPR): The computed
partial responses are collected and summed together
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to obtain the response. This is actually performed on
the response fragments. This ALC is required both
for differential reinforcement training, and retrieval.

[PR, T (all:all)] = R,

Gather Response (GR): The response fragments are
collected back into one node for storage. This ALC is
required during retrieval.

[RR, = (y=0x=0y=0]=R,

4.3 Complexity Analysis

The principal objective of our analysisisto obtain an
optimum grid size for a given application size and
processor architecture.

Let us assume few specifications. Let the stimulus
pattern has S elements, response pattern has R
elements, and the computation is performed on a gxp
grid each processor each receiving nxm block of the
computation (see Fig-1). Let us also assume that the
size of each MCN element is b bitselement, the
communication rate is B bits/s, each MCN operation
(one complex multiplication and one complex
addition) involves a floating point operations and
each processor can compute F floats/sec. Also assume
that thelatency istiatency .

First Dimension: We will first derive the block size m
along r-dimension because, along r-dimension there
is no inphase recurrent dependency in either training
or retrieval phase. The only recursive communication
cost involved during training is the cost of stimulus
scattering (fragments b and c) at the beginning of
each phase. For retrieval it aso involves gathering of
response (fragment g). The time to compute the block
task is:

a
=Teomp = MX nEIE-
The time to send the block task for training is:

b
Toomm = (m+ n) Bg + 2'tlatency

Thetime to send the block task for retrieval is;

Tconm = (2m+ n) % + 2'tlatency'

Jobs can be distributed as long as the time to pack and
ship the job is less than the time to compute it locally.

Therefore, for effective parallelization the following
inequality should hold:

mx n > k.(m+n) where , - 2

alB
k is a machine architecture based constant. It can be
shown that to make the above rdationship true,
inequality k< min(m,n) must also be true under the
assumption than nY¥ <<mxn for training and
27 <<mxn for retrieval. Assuming m<<n, the
analyses now shows that for effective speedup we
should maintain m>k. For example, on IBM-SP2 k is
typically 1.8~10. Thus, m selected larger than 2~10
provides sustained speedup. From m, for a given R,
the grid dimension g can be obtained as R/m.

Second Dimension: Now we will determine the
optimum value for the other grid dimension p.
Among the above fragments, generally a and h are
one time costs and non repetitive. During training the
principal communication costs are b, ¢, e. Following

are the costs of these ALCs:
_Sb S.blogp
Tss - ? + q'tlatency+ ?T + Iog p'tlatenc)

Here the first two terms accounts for the cost of
Scattering and the last two terms accounts for
Broadcasting. Similarly the cost of Response
Scattering (symmetrical) is given by:

T = %b + p'tlatency+R_.b Iogq

ss + |Og q tIatency
The cost of All Gather Partial Response is (each
partial response gathering is aso a series of

Broadcasts) :

Rblo

gpr = q?% + q'logq'tlatency

The recurrent communication cost of reinforcement
training is give by TCUEmnmcoding ST+ T, + T, and the
cost of retrieval is given
by: TRewee =T 4 T + Ty .For the analysis we use
the following assumptions (i) that the size of stimulus
pattern is much larger than response S>> R (thisis
generally the case since S is the image and R is a
small index pattern), (ii) the latency time is much
smaller than stimulus communication time (this is
aso true for S in the order of Kbhits), and (iii)
Te =T, (this is generdly the case, as the
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Gathering is just the reverse of Scattering operation).
By solving both:
dTRarieve dTEncode

comm = 0 comm _ — 0

dp dp

the following can be derived stating the optimum
relationship between the grid dimensions:

R
p* = S [4° Hogq

The above analysis suggests that, it is more efficient
to arrange the gxp processor grid space in such a way
that g<p. ( because S>>R).

5. Parallelization at MCN L evel

At the heart of Holographic computation lies complex
valued operations. Each complex valued operation
(multiplication, addition, subtraction), is composed of
multiple scalar floating point operation. This section
describes how fine grain paralldism can be achieved
by concurrent scheduling of these complex
operations.

5.1 Schemes

The complex product computation can be paralldized
at two levels. These are Dimension Parallel (DP) and
Operation Parallel (OP) modes. In DP mode the final
value for each dimension is computed concurrently on
separate floating point units (FPUs). But, all

Operation Parallel Scheme

operations for one dimension are performed (in
sequence) in one FPU. In OP mode Al
multiplications are performed concurrently in
separate FPUs. At a second stage, the additions are
performed through group exchanges among the sets
of these FPUs. Fig-3 shows the both of the schemes.

5.2 Complexity Analysis
The sequential complexity to perform a 2-D complex
multiplication using scalar floating point operations
are as fallowing:

tood =4t +4t

2d-complex comn{r) comp(*)

+2t +2t

comp(+) comn(s)

However, if we perform the same operation using the
OP scheme then, both the input output
communications can be performed in paralld.
However, an intermediate data exchange will be
needed among some of the processors. This reduces
the execution time to:

OP —
t2d—c0mp|ex_ 2tc0mnﬂr) + tcomp(*) +tc0mnﬂx) + tcom;:(+) + tcomnﬂs)
The above scheme, however, involves the

intermediate data exchange. This exchange can be
removed by DP scheme. The time cost in DP scheme

isgiven by:

seq —
t2d—comp|ex - 4tcomn(r) + 2tcom[(*) + tCOm[(+) + tcomn(s)

N
£
a

la ] el

Dimension Parallel Scheme

Fig-3 Parallel Logic Unit Arrangements for OP and DP
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Table-1 Comparison Table

Case OP Case DP
Communication
Seq seq
Favored SOP | — Lt d-complex __ 2d2 - d SDP _ | — Lt td—complex — 2d2 - d -
d-Dim| — t <<t oP - + d-Dim tmm«n<<tmrm th) 2d _1
comm comp td—complex 1 |Ogd d-complex
Rate
Seq 2 seq
Matched SOP | = Lt td—complex = 2d” +2d SDP _ Lt td—comp|e< _ d+1
d-Dim| = toomm=Lco tOP B 4 + 2| d d_Dim| - t =t DP -
™t d—complex og comm™Teomp td—comple< 2
Computation tzeq , tzeq | N
Favored S = Lt —complex _ S = Lt —complex _
’ Dlm| foomm>>tcomp t(?fcomple( 3+ |Ogd d D|m| toomm>>comp t(?fcompla 2d+1

5.3 Comparisons

The best and most desirable parallel multi-chip is
where the communication or 1/0 speed is negligible
compared to computation speed (i.e. the chip-
architecture is communication-favored). However,
often the redlity is just the reverse, when the chip
architecture is more computation efficient. However, a
more pragmatic and cost effective chip-design
strategy is to make the rate of I/O and the rate of
processing approximately matching each other
ensuring a smooth dataflow. The speedup
performances under OP and DP schemes for all these
three situations are given in Table-1. The higher the
MCN dimension of computation the higher the scope
of parallelization. Table-1 lists the speedup in terms
of MCN dimension d. Table2 and 3 shows some
actual numbers for OP and DP respectively. Table-3
shows corresponding logic utilization efficiency for
both OP and DP.

These results suggest that (i) when the available chip
architecture is communication efficient (low
communication time compared to computation time),
OP scheme will yield the highest speedup.

Table-1 suggests that in such a case amost linear
speedup can be achieved with respect to the MCN
dimension of holograph. (ii) When, the available chip
architecture is rate matched (when the
communication and computation rates are
comparable), we would still like to use OP as the
speedup will remain closeto 2, so far speedup ismore
important than the cost logic. (iii) However, when
cost of logic is substantial, then it will be more

efficient to use DP. DP uses d ALUs while OP
requires > ALUs. This is specially advisable when
the architecture is rate matched or computation
favored.

Table-2 Speedup in OP Arrangement

Operation Parallel Scheme (Speedup)

Dim=d | Comm. Rate Comp.
Favored Matched Favored

2 3.00 2.00 1.50

3 5.00 3.00 1.80

4 9.33 5.00 2.40

5 11.25 6.00 2.50

6 16.50 8.40 3.00

7 22.75 11.20 3.50

8 30.00 14.40 4.00

Table-3 Speedup in DP Arrangement

Dimension Parallel Scheme (Speedup)
Dim=d | Comm. Rate Comp.
Favored Matched Favored
2 2.00 1.50 1.20
3 3.00 2.00 1.29
4 4.00 2.50 1.33
5 5.00 3.00 1.36
6 6.00 3.50 1.38
7 7.00 4.00 1.40

6. Experimental Results

A simulation, based on the results of above analysis
and parallelization model has been implemented on
the IBM SP2 machine architecture at Maui High
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Performance Computing Center. We were able to
demonstrate sustained scal ability for this model.

Table-4 Logic Efficiency
Dim=d OP Scheme DP Scheme

Rate Comp. Rate Comp.
Matched | Favored Matched | Favored

2 0.50 0.38 0.75 0.60

3 0.33 0.20 0.67 0.43

4 0.31 0.15 0.63 0.33

5 0.24 0.10 0.60 0.27

6 0.23 0.08 0.58 0.23

7 0.23 0.07 0.57 0.20

8 0.23 0.06 0.56 0.18

The implementation encodes 2,000 images patterns
of 32,000 elements each (this represents a search
space of 64 Mbytes). We used an index response
pattern of length 32. Fig-4 plots the speedup and
efficiency for reinforcement encoding and retrieva
operation. The data has been taken on an average of
100 training and retrieval attempt. However, no
advantage has been taken by pipdining the
operations. Each subsequent run has been started only
after the completion of the previous run.

Grid dimenson mx2 has been used for the
simulations. The k for Basic Encoding is 1.98, and

the k for Reinforcement Encoding is about 4.6 for the
SP2 architecture. Thus we maintained m=32/2=16.

As evident from the graph, Holographic retrieval can
be performed with almost linear scalability with more
than 90-70% sustained efficiency in processor
utilization. The figure also shows that much heavier
holographic training can be performed with similar
linear scalability but with even higher- more than
90% efficiency.

What does the above scalability means for pattern
matching/image search problems? Beow is a
projection. Let us consider that an earth or planetary
cover image database. We have to search for a small
dynamically defined object(s) in this massive amount
of images. If each image covers an area of 10 min x10
min, then (360x6)x(360x6)=4,665,600 images are
required to be matched. Let us also consider each
image is of size 8Kx8k. This indicates a raw search
space of 268 Tera Bytes. Considering a 12 element
response pattern, a scheme which divides images into
10 distributed holographs, assuming parallelization
efficiency of 0.8, the encoding and decoding times for
two machines are given in Table-4. For comparison,
theretrieval time using procedural technique is shown
in the last column.

parlVHAC on SP2: Speedup and Efficiency
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Fig-4 Speedup and Efficiency
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Table-5 Server Performance

System Nodes Power Tencode Tretrieve Tregular
MFLOPS |sec/image/iter sec/loc sec/loc
CRAY C90 16 A79 315 21 85
MEIKO COMP. SURFACE 32 .210 71.87 475 194
As evident, MHAC bring down the retrieval time Refer ences

from minutes to sewmnds. This enormous sving
resulted at two steps. The first level of speed up has
been gained from the very holographic technique
itsef. It enfolds the eatire search space into
Holographs of much smaller dimension. A retrieval
reguires only a constant time cnvolution. The second
level of speadupis gained from dired parall ization.

7. Conclusions

In our investigation, we have arefully studied the
paraldization of multi-dimensional holographic
asociative wmputing (MHAC) model. The result
suggests MHAC model, besides its unique
characteristics, is also ane of the most suitable among
the asxociative models for paraldization. In the
algorithm level the the regular computation can be
excdlently paraldized. The heavy grain MCN
computation, which generaly puts MHAC at odd
with mainstream NN and AM models, can also be
accderated dminising the difference using logic level
parall eli sm.

Capahility wise, MHAC model expands the horizon of
distributed and cdlular computing for its ability of
dynamic focus or search localizaion. Interestingly,
even as a conventional adaptive filter, MHAC has
demonstrated superior convergence and capacity than
many other AAMs (Hopfield, BAM, fuzzy-ART, etc.).
For example, experiment has demonstrated that 1024
randomly generated patterns each with 4K eements
can be asciatively enfolded on a MHAC memory of
12K bytes and can be recall ed with lessthan 4% error
[11,4,6]. Thus, not only the new applications, but the
results of this parallelization can equally benefit the
conventional applications of current AAMs.

Notably, besides salahility on conventional parall el
procesors, MHAC has excdlent suitability for optical
implementation. A part of this research has bee
supported by DARPA grant no: HJ150031750562
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