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Abstract 
This paper presents a parallel holographic 
associative recollection engine for large scale pattern 
matching, including the simulation result on 400 node 
IBM SP2 cluster. This engine is based on a new 
adaptive computing paradigm called 
multidimensional holographic associative computing 
(MHAC). Unlike any previous associative memory, 
MHAC has the unique ability to localize the match on 
any dynamically specified zone in the pattern. This 
particular paper explores the opportunities  to 
expedite the digital implementation of MHAC by 
using parallel computation targeting large best-
match pattern matching applications. This report 
contains results of this investigation beginning from 
the fine grain pipe-line parallelism at the instruction 
level to the high level algorithmic parallelism. 
Consequently the paper demonstrates a potential 
parallel architecture of the system.  It also presents a 
validation of the proposed design on a simulation 
realized on a 400 Node IBM SP2 machine. 

Key words: associative memory, attention, focus, 
parallel neuro computing, pattern matching, image 
retrieval. 

1. Introduction 
It has been demonstrated recently by Khan [4] that a 
new form of associative computing mechanism called 
Multidimensional Holographic Associative Memory  
(MHAC) possesses some attractive properties which 
dramaticall y extend the recollection abilit y of current 
neuro computing.  

The foremost of these are it’s abilit y to “ focus” .  It can 
locali ze the associative search on any sub-part of the 
example pattern and retrieve a target which is closest 

with respect to this specified sub-part. More 
interestingly, this locali zation can be specified 
dynamicall y during retrieval. In contrast, all current 
neural networks (NN), converge to a pattern which is 
close to the sample pattern with respect to all the 
elements. Once the training is over, there is no way of 
recasting  the focus on any specific sub-pattern [3].  

Another unique capabilit y is its aptitude to search 
small patterns. If more than 30% (theoretical limit i s 
50%) bits of a pattern are flipped, most NNs cease to 
recognize the pattern. In striking contrast, it has been 
demonstrated that armed with “attention” ,  MHAC 
can retrieve a learned pattern just from 10% of the 
sample. Essentiall y, MHAC paves the way for 
searching “needle”  in digital “haystack” [4,5]. 
MHAC has been derived  from a digital 
generali zation of optical holography  [2].   

Applications of MHAC: The proposed MHAC model 
demonstrates the adaptabilit y and learning abilit y li ke 
other artificial associative models. In addition it 
demonstrates important capabiliti es li ke search 
locali zation or the abilit y to work with small focus. 
The unique abiliti es of MHAC can potentiall y help an 
impressive array of challenging pattern matching 
applications such as large scale image processing, 
image based object recognition, signal processing, 
spectral-date volume analysis, function 
approximation, classification based on partial 
information, complex control system requiring fast 
real-time response, and content-based image retrieval 
in massive archives [5].  

For example, in Medical diagnostics, a physician may 
want to search for a small tumor from a pile of CT-
stack images. Or a doctor may want to search for all 
the past cases which would show a specific 
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deformation in the bone structure. In satellit e 
imaging, it can be the search for a tiny target in land 
cover images. In spectral data analysis, it can be the 
search for a narrow signature pattern into the Fourier 
images of vast number of multi -spectral data sets.  

Typicall y such applications require searching into a 
massive number of images or digital patterns and the 
objects of focus in the sample are small (5-20% of the 
image frame), nor they are precisely definable at the 
encoding time (non modellable target). To make the 
matter even worse for conventional Neural Networks 
(NNs) or Associative Memories (AMs)  the target of 
search can vary wildly from query to query. MHAC 
offers solution to such applications. 

Paralleli zation of Neural Models:  Paralleli zation of 
NN architectures has been an extremely active area  
of research [9,1,10]. The need of paralleli zation of 
any neural models originates from two application 
characteristics. When any network tries to learn a 
complex function space, the number of neurons in 
inner layers grow to accommodate the discriminating 
hyperplanes. Also, in such a case neural networks 
tend to require more training samples, or  more 
training iterations before the complexity of the 
discriminating space propagates and stabili zes. Need 
of paralleli zation becomes more severe when the data 
size becomes large. Its complexity grows both in 
terms of memory requirement and execution time. For 
large and complex applications, the simulation time 
of NN dynamics can be exceedingly large on 
sequential machines.  

The need for paralleli zation is so pressing that NN 
methods have been tried on almost every 
experimental and commercial parallel hardware that 
came out in recent times. These include architectures 
such as Warp [8], which exploits intensive pipeline 
paralleli sm, Connection Machine [10], which allows 
exploitation of minuscale paralleli sm, and 
Transputers which allows dynamic reconfiguration of 
interconnections, intuiti vely useful for irregular net 
simulation [7]. A comprehensive survey of the 
paralleli zation efforts of contemporary neural models 
can be found in [9].  

Neural networks and associative memories are 
generall y assumed to be naturall y parallel. Neural 
calculations are performed in small i dentical units. 
Interestingly, despite the apparent distributed nature 
of the computation, the paralleli zation of neural 
models often have been nontrivial. Several reasons 

attributed to such diff iculty. First of all , for many 
networks, the cell s are irregularly connected. 
Secondly, although each cell tends to use only local 
interconnection and thus local information, but as a 
whole the information still propagates in a slow 
iterative manner through the network. Also hardware 
wise, neural cellular computations appears to be too 
fine grained. Like other cellular models, MHAC itself 
also offers some unique challenges and scopes for 
paralleli zation. This research explores these 
challenges and scopes intimately and demonstrates 
how a scalabable mapping can be achieved that can 
offer near linear scalabilit y. 

From the design point of view,  in this paper we 
focused not only on the issues related to the core 
algorithm but also we have carefull y evaluated the 
potential application scenarios and attempted to 
derive a paralleli zation scheme which ultimately 
assures optimum paralleli zabilit y from the overall 
application point of view. The following section, first 
presents very briefly the holographic model. Then 
section 3, identifies the paralleli zation strategies. In 
section 4 and 5 we describe in detail the proposed 
schemes to exploit paralleli sm at two levels: (i) at the 
level of algorithm, and (ii ) at the level of fine grained 
operation . Finall y, in section 6 we present the 
simulation result from an IBM-SP2 implementation 
of the proposed model. This paper however, does not 
contain the theory of MHAC or its direct applications  
derived from its unique abiliti es. Inquisiti ve reader 
may want to consult [4,5,6] for further reading. 

2. Holographic Search 

2.1 Representation  
MHAC represents information as two tire quantity, 
the actual measurement and a meta-information 
“attention” (or focus) . For example for an image the 
pixel value is the measurement. Each pixel may also 
take an associated second meta-quantity representing 
the “importance”  of the pixel.  Computationally, this 
bi-modal information is represented as a 
multidimensional complex number (MCN) spanned in 
a hyperspherical space. In this scheme an element of 
information is represented as: 
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Here, α k   is the measurement and is mapped onto a 
set of phase elements θ j k,   in the range of 
π θ π≥ ≥ − . λ k is the meta-quantity focus. 
Following are the representations of a complete 
stimulus pattern and a response pattern: 
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2.2 Training and Retrieval 
Both the training and retrieval algorithms of MHAC 
have been derived from a digital adaptation of the 
optical transforms in holography [4,2]. Learning 
constitutes computation of individual complex 
associations, and superimposition of the associations 
on the holographic substrate. Following equation 
describes a reinforcement model of holographic 
learning: 

[ ] [ ] .[ ] ([ ] [ ][ ])X X S R
c

S XT= + −η 1
  

The substrate [X] is stored as a MCN matrix. η is the 
learning constant. The substrate acts as the memory. 
The retrieval process is similar to optical convolution. 
During recall, an excitatory stimulus pattern [ ]S e  is 
obtained from the query pattern: 
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In the event, that this new stimulus resembles closely 
to a priory encoded stimulus, then the corresponding 
response pattern is generated with high magnitude. 
The decoding operation is performed by computing 
the inner product of the excitatory stimulus and the 
correlation matrix  [X]: 

[ ] [ ].[ ]R
c

S Xe e= 1
,,  wwhheerree  c k

k

n

= ∑λ     

The model treats the measurement component of 
information in a fundamentally different way than 
any NN. The elements of these vectors are complex 
numbers and measurement components are 
exponents.  A complete theoretical and empirical 
analysis of the characteristics of this model is beyond 
the scope of this paper, but can be found in [4] and 
also will appear in [6]. 

3. Parallelization Strategies 
Operational Scenario: The image patterns (here after 
called stimulus pattern), those will constitute the 
search space, are first  assigned a small index pattern 
(here after called response pattern). The association 
between the stimulus pattern and response patterns 
are then encoded in the form of a digital holograph. 
During the query, a query image pattern and a meta-
mask denoting the object(s) of focus within this 
search sample are received. The memory then 
performs a single step convolution with the 
Holograph. If there is a match with any of the stored 
image pattern, the  corresponding  response pattern 
emerges out of this convolution. 

Learning: The core computation in this scenario 
involves holographic encoding (or training) and 
associative retrieval. Training is generally a batch 
process. The reinforcement algorithm is also iterative. 
The emphasis in training is to increase the 
throughput.  Here the biggest challenge arises from 
the size and number of the patterns. Generally non-
symbolic digital patterns/images are 
representationally sparse. For example, In the medical 
diagnostics application, we search for a small tumor 
in a pile of cross-sectional CT-stack images. Each CT 
can be 1024x1024. And cross-sections shot at 2 mm 
apart a single patient  can mean 500-1000 such 
images. It can be satellite image search, where we 
would like to find a specific small target from a 
massive set of patchwork of high resolution land 
cover images. A patchwork may mean 1,000-10,000 
color images of resolution 1024x2048x3. Or it can be 
spectral data analysis where, after Fourier transform 
we are looking for a signature pattern into a series of 
multi-spectral images. A single shot can contain 256 
spectral channels. MHAC model typically converges 
within 5-15 cycles (and is faster converging than 
many other NNs). However, for target applications of 
the scale mentioned above, it signifies an enormous 
computational challenge.  

Retrieval: Retrieval may or may not be a batch 
process but the turn around time has to be reduced  
dramatically to match the demand of many real-time 
and near real time applications. There are also 
retrieval situations, where it is often necessary to  
match a large number of sample patterns. One such 
case is when the recognition requires some form of 
dynamic invariant matching. In many cases, there 
may not exist an invariant representation (such as 
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polar rotational invariant normalization for multi-
object image) resulting into large number of template 
matching. Logically compounded high level query 
may also generate a large set of low level queries. 
Such situations, combined with large size of the 
associative memory can easily make the retrieval 
process a massive computational task even within the 
associative computing paradigm. 

Algorithm Level Parallelism: In this paper, our 
strategy is to offer solution to both of these phases. 
We principally attack the problem of parallelization at 
two levels. First is in the level of algorithm. Here we 
decompose both the phases into a set of basis 
communication and computation fragments. We use 
block decomposition of the computation. However, 
the reinforcement sub-cycle of the learning algorithm 
makes training steps to be intra-dependant. We 
present analysis which demonstrates how these 
fragments can be parallelized, and optimally 
organized in a synergy to perform both the training 
and retrieval phases in most parallel mode. 

Instruction Level Parallelism: In the second level we 
show, how the operations inside the cells can also be 
parallelized to exploit the finer grain of parallelism 
inherent in this model. Each elementary computation 

in MHAC is heavier, as it has to process MCNs. This 
is a marked contrast compared to the conventional 
NN models. We show two top contending techniques 
to parallelize MCN operations, and provide analysis 
of their relative merits and demerits. 

4. Parallelization at Algorithm Level 

4.1 Cells & Interconnection 
This section presents the proposed scheme for 
exploiting the high level parallelism inherent in the 
algorithm and the application scenario.  Fig-1 shows 
the interconnection of the computing nodes. The 
holographic computation by nature has three 
dimensions of dependencies. The units are 
correspondingly laid out as a 3-dimensional grid.  
Each association is computed by a stimulus and 
response patterns. The stimulus patterns are divided 
among the cells along the s-dimension (vertical axis 
in Fig-1). The response patterns are divided along the 
r-dimension (horizontal axis). These two dimension 
makes a frame-plane. One frame-plane handles one 
association. Multiple associations can be handled 
concurrently by  slices of such frame-planes laid 
across  the association or a-dimension (depth axis).  
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Fig-1 Holographic Cell Arrangement 
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4.2 Communication 
The  operation of MHAC can be decomposed into a 
basis set of operation fragments. This basis set has 
two computation fragments and six communication 
fragments. Following is the complete list: (a) Scatter 
Holograph (SH), (b) Scatter Stimulus  (SS), (c) 
Scatter Response (SR), (d)  Compute Recollection 
(REC) (e) All Gather Partial Response (GPR), (f) 
Basic Encode (BE), and (g) Gather Response (GR), 
and (h) Gather Holograph (GH). A Reinforcement 
Encoding  requires fragments a,c,d,e, f and h. 
Recollection requires fragments a,b,d,e and g.  

The Algorithm Level Communication (ALC) 
fragments have been designed on top of the following 
four Collective Communication Routines (CCR). 
These are (a) Scatter, (b) Gather, (c) Broadcast and 
(d) Allgather. All CCRs occur  along a row or column 
group in the grid. Before Scattering (Fig-2(a)), one of 
the nodes initially contains all the array data. After 
Scattering each of the cell receives a segment of the 
array in order of they rank in the participating row or 
column group. The Gathering communication is the 
reverse of Scattering. In Allgather every cell receives 
the augmented array (Fig-2(b)).  

The following notations have been used to describe 
the ALCs in terms of CCRs. ↔

� � ������ �
	��
���  is used 
to signify the row-wide scattering operation among 
the group from the source node. ↔ � � ��
	��
��� ���
�  
signifies a gather operation at the sink from the 
group. Similarly, � ( : )src group  or 
� ( , )group snk  denoted a column wide scattering 

or gathering operation. We use, ⇔ � � ������ �
���
�� , 
and ! ( , )src group   to respectively denote row-
wide and column wide broadcast operations. As 
evident, ALCs can be implemented in various ways. 

The schemes below specify the most efficient 
sequence based on row-major data structure for 
holograph and pattern vectors. 

Scatter Holograph (SH): The initial holograph is 
distributed to the working nodes in the grid as blocks. 
This ALC is required for re-training of a holograph, 
and during retrieval. It has been implemented as the 
following sequence of operations. Operations are 
performed according to the order of parenthesis 
(superscript T signifies transposition of matrix). 

[ ][ ]H x y x x all HH
T T

x y0 0 0 0 0 0, ,( , : ) ( : )
"

= = = ↔ =



 =

  

Gather Holograph (GH): The scattered holograph 
fragments are collected in one node for storage. This 
ALC is required after the training.  

[ ][ ( : )] ( : , ), ,HH all x x x y Hx y
T T↔ = = = = =0 0 0 0 0 0

#
  

Scatter Stimulus (SS): The stimulus patterns are 
distributed to individual nodes. This ALC is required  
both for training and retrieval. This ALC is present in 
the recursive cores of all holographic operations. 
Note, stimulus fragments are never required to 
assembled together. 

[ ][ ]S x y x x all SSx y

$
( , : ) ( : ) ,= = = ⇔ = =0 0 0 0   

Scatter Response (SR): The response patterns are 
distributed to individual nodes. This ALC is required  
both for training and retrieval. 

[ ][ ]R x y y y all RRx y0 0 0 0 0 0, ,( , : ) ( , )↔ = = = = =
%

  

All Gather Partial Response (GPR): The computed 
partial responses are collected and summed together 
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to obtain the response. This is actually performed on 
the response fragments. This ALC is required  both  
for differential reinforcement training, and retrieval. 

[ ]PR all all RRx y x y, ,( : )
�

=   

Gather Response (GR): The response fragments are 
collected back into one node for storage. This ALC is 
required during retrieval. 

[ ]RR y x y Rx y, ,( : , )↔ = = = =0 0 0 0 0
  

4.3 Complexity Analysis 
The principal objective of our analysis is to obtain an 
optimum grid size for a given application size and 
processor architecture.  

Let us assume few specifications. Let the stimulus 
pattern has S elements, response pattern has R 
elements, and the computation is performed on a qxp 
grid each processor each receiving nxm block of the 
computation (see Fig-1). Let us also assume that the 
size of each MCN element is b bits/element, the 
communication rate is B bits/s, each MCN operation 
(one complex multiplication and one complex 
addition) involves a floating point operations and 
each processor can compute F floats/sec. Also assume 
that  the latency is tlatency  .   

First Dimension: We will first derive the block size m 
along r-dimension  because,  along r-dimension there 
is no inphase recurrent dependency in either training 
or retrieval phase. The only recursive communication 
cost involved during training is the cost of stimulus 
scattering (fragments b and c) at the beginning of 
each  phase. For retrieval it also involves gathering of 
response (fragment g). The time to compute the block 
task is: 

== T m n
a

Fcomp = × ⋅ ..    

The time to send the block task for training is:  

T m n
b

B
tcomm latency= + ⋅ +( ) .2   

The time to send the block task for retrieval is: 

T m n
b

B
tcomm latency= + ⋅ +( ) .2 2 ..  

Jobs can be distributed as long as the time to pack and 
ship the job is less than the time to compute it locally. 

Therefore, for effective parallelization the following 
inequality should hold: 

m n k m n× > +.( )   wwhheerree  k
b F

a B
=

⋅
⋅

    

k is a machine architecture based constant.  It can be 
shown that to make the above relationship true, 
inequality k< min(m,n) must also be true under the 
assumption than m m n2 << ×  for training and 
2 2⋅ << ×m m n  for retrieval. Assuming m<< n, the 
analyses now  shows that for effective speedup we 
should maintain m>k. For example, on IBM-SP2 k is 
typically 1.8~10. Thus,  m selected larger than 2~10 
provides sustained speedup. From m, for a given R, 
the grid dimension q can be obtained as R/m.  

Second Dimension: Now we will determine the 
optimum value for the other grid dimension p. 
Among the above fragments, generally a and h are 
one time costs and non repetitive. During training the 
principal communication costs are b, c, e. Following 
are the costs of these ALCs: 

T
S b

B
q t

S b

B

p

q
p tss latency latency= + + +.

.
. log

log .   

Here the first two terms accounts for the cost of 
Scattering and the last two terms accounts for 
Broadcasting. Similarly the cost of Response 
Scattering (symmetrical) is given by: 

T
R b

B
p t

R b

B

q

p
q tss latency latency= + + +.

.
. log

log .   

The cost of  All Gather Partial Response is (each 
partial response gathering is also a series of 
Broadcasts) : 

T q
R b

B

q

p
q q tgpr latency= +

. log
.log .   

The  recurrent communication cost of reinforcement 
training  is give by T T T T

comm

Encoding
ss sr gpr= + + , and the 

cost of retrieval is given 
by: T T T Tcomm

trieve
ss gpr gr

Re = + + .For the analysis we use 
the following assumptions (i) that the size of stimulus 
pattern is much larger than response S >> R (this is 
generally the case since S is the image and R is a 
small index pattern), (ii) the latency time is much 
smaller than stimulus communication time (this is 
also true for S in the order of Kbits), and (iii) 
T Tsr gr≈  (this is generally the case, as the 
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Gathering is just the reverse of Scattering operation).  
By solving both: 

  dT

dp
0comm

Retrieve

= ,,  dT

dp
comm
Encode

= 0     

the following can be derived stating the optimum 
relationship between the grid dimensions: 

p
R

S
q qopt = ⋅ ⋅2 log   

The above analysis suggests that, it is more efficient 
to arrange the qxp processor grid space in such a way 
that q<p. ( because S>>R). 

5. Parallelization at MCN Level 
At the heart of Holographic computation lies complex 
valued operations. Each complex valued operation 
(multiplication, addition, subtraction), is composed of 
multiple scalar floating point operation. This section  
describes how fine grain parallelism can be achieved 
by concurrent scheduling of  these complex 
operations.  

5.1 Schemes 
The complex product computation can be parallelized 
at two levels. These are Dimension Parallel (DP) and 
Operation Parallel (OP) modes. In DP mode the final 
value for each dimension is computed concurrently on 
separate floating point units (FPUs). But, all 

operations for one dimension are  performed (in 
sequence) in one FPU. In OP mode, all 
multiplications are performed concurrently in 
separate FPUs. At a second stage, the additions are 
performed through group exchanges among the sets 
of these FPUs. Fig-3 shows the both of the schemes. 

5.2 Complexity Analysis 
The sequential complexity to perform a 2-D complex 
multiplication using scalar floating point operations 
are as following: 

t t t t td complex
seq

commr comp comp comms2 4 4 2 2− += + + +( ) (*) ( ) ( )   

However, if we perform the same operation  using the 
OP scheme then, both the input output 
communications can be performed in parallel. 
However, an intermediate data exchange will be 
needed among some of the processors. This reduces 
the execution time to: 

t t t t t td complex
OP

commr comp commx comp comms2 2− += + + + +( ) (*) ( ) ( ) ( )

  

The above scheme, however, involves the 
intermediate data exchange. This exchange can be 
removed by DP scheme. The time cost in DP scheme 
is given by: 

t t t t td complex
seq

commr comp comp comms2 4 2− += + + +( ) (*) ( ) ( )   
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Fig-3 Parallel Logic Unit Arrangements for OP and DP 
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Table-1 Comparison  Table 

 Case OP Case DP 
Communication  

Favored S Lt
t

t
d d

dd Dim
OP

t t

d complex
seq

d complex
OP

comm comp
− <<

−

−

= = −
+

2
1

2

log
  S Lt

t

t

d d

d
dd Dim

DP

t t

d complex
seq

d complex
DP

comm comp
− <<

−

−

= = −
−

=
2

2 1

2

  

Rate  

Matched S Lt
t

t

d d

dd Dim
OP

t t

d complex
seq

d complex
OP

comm comp
− ≈

−

−

= = +
+

2 2

4 2

2

log
  S Lt

t

t

d
d Dim
DP

t t

d complex
seq

d complex
DP

comm comp
− ≈

−

−

= = + 1

2
  

Computation  

Favored S Lt
t

t

d

dd Dim
OP

t t

d complex
seq

d complex
OP

comm comp
− >>

−

−

= =
+

3

3 log
  S Lt

t

t

d

dd Dim
DP

t t

d complex
seq

d complex
DP

comm comp
− >>

−

−

= =
+

3

2 1
  

 

5.3 Comparisons  
The best and most desirable parallel multi-chip is 
where the communication or I/O speed is negligible 
compared to computation speed (i.e. the chip-
architecture is communication-favored). However, 
often the reality is just the reverse, when the chip 
architecture is more computation efficient. However, a 
more pragmatic and cost effective chip-design 
strategy is to make the rate of I/O and the rate of 
processing approximately matching each other 
ensuring a smooth dataflow. The speedup 
performances under OP and DP schemes for all these 
three situations are given in Table-1. The higher the 
MCN dimension of computation the higher the scope 
of parallelization. Table-1 lists the speedup in terms 
of MCN dimension d. Table-2 and 3 shows some 
actual numbers for OP and DP respectively. Table-3 
shows corresponding logic utilization efficiency for 
both OP and DP. 

These results suggest that (i) when the available chip 
architecture is communication efficient (low 
communication time compared to computation time), 
OP scheme will yield the highest speedup. 

Table-1 suggests that in such a case almost linear 
speedup can be achieved with respect to the MCN 
dimension of holograph. (ii) When, the available chip 
architecture  is rate matched  (when the 
communication and computation rates are 
comparable), we would still like to use OP as the 
speedup will remain close to 2, so far speedup is more 
important than the cost logic. (iii) However, when 
cost of  logic is substantial, then it will be more 

efficient to use DP.  DP uses  d ALUs while OP 
requires d2  ALUs. This is specially advisable when 
the architecture is rate matched or computation 
favored. 

 

Table-2 Speedup in OP Arrangement 
Operation Parallel Scheme (Speedup) 

Dim=d Comm.  
Favored 

Rate  
Matched 

Comp.  
Favored 

2 3.00 2.00 1.50 

3 5.00 3.00 1.80 

4 9.33 5.00 2.40 

5 11.25 6.00 2.50 

6 16.50 8.40 3.00 

7 22.75 11.20 3.50 

8 30.00 14.40 4.00 

 

Table-3 Speedup in DP Arrangement 
Dimension Parallel Scheme (Speedup) 

Dim=d Comm.  
Favored 

Rate  
Matched 

Comp.  
Favored 

2 2.00 1.50 1.20 

3 3.00 2.00 1.29 

4 4.00 2.50 1.33 

5 5.00 3.00 1.36 

6 6.00 3.50 1.38 

7 7.00 4.00 1.40 

6. Experimental Results 
A simulation, based on the results of above analysis 
and parallelization model has been implemented on 
the IBM SP2 machine architecture at Maui High 
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Performance Computing Center.  We were able to 
demonstrate sustained scalability for this model. 

Table-4 Logic Efficiency 

Dim=d OP Scheme DP Scheme 
 Rate  

Matched 
Comp.  

Favored 
Rate 

 Matched 
Comp.  

Favored 
2 0.50 0.38 0.75 0.60 

3 0.33 0.20 0.67 0.43 

4 0.31 0.15 0.63 0.33 

5 0.24 0.10 0.60 0.27 

6 0.23 0.08 0.58 0.23 

7 0.23 0.07 0.57 0.20 

8 0.23 0.06 0.56 0.18 

The implementation encodes 2,000  images patterns 
of  32,000 elements each (this represents a search 
space of 64 Mbytes). We used an index response 
pattern of length 32. Fig-4 plots the speedup and 
efficiency for reinforcement encoding and retrieval 
operation. The data has been taken on an average of 
100 training and retrieval attempt. However, no 
advantage has been taken by pipelining the 
operations. Each subsequent run has been started only 
after the completion of the previous run. 

Grid dimension mx2 has been used for the 
simulations. The k for Basic Encoding is 1.98, and 

the k for Reinforcement Encoding is about 4.6 for the 
SP2 architecture. Thus we maintained m=32/2=16. 

As evident from the graph, Holographic retrieval can 
be performed with almost linear scalability with more 
than 90-70% sustained efficiency in processor 
utilization. The figure also shows that much heavier 
holographic training can be performed with similar 
linear scalability but with even higher- more than 
90%  efficiency. 

What does the above scalability means for pattern 
matching/image search problems? Below is a 
projection. Let us consider that an earth or planetary 
cover image database. We have to search for a small 
dynamically defined object(s) in this massive amount 
of images. If each image covers an area of 10 min x10 
min, then (360x6)x(360x6)=4,665,600 images are 
required to be matched. Let us also consider each 
image is of size 8Kx8k. This indicates a raw search 
space of 268 Tera Bytes. Considering a 12 element 
response pattern, a scheme which divides images into 
10 distributed holographs, assuming parallelization 
efficiency of 0.8, the encoding and decoding times for 
two machines are given in Table-4. For comparison, 
the retrieval time using procedural technique is shown 
in the last column.  

 

Fig-4  Speedup and Efficiency 
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As evident, MHAC bring down the retrieval time 
from minutes to seconds. This enormous saving 
resulted at two steps. The first level of speed up has 
been gained from the very holographic technique 
itself. It enfolds the entire search space into 
Holographs of much smaller dimension. A retrieval 
requires only a constant time convolution. The second 
level of speedup is gained from direct paralleli zation. 

7. Conclusions 
In our investigation, we have carefull y studied the 
paralleli zation of multi -dimensional holographic 
associative computing (MHAC) model. The result 
suggests MHAC model, besides its unique 
characteristics, is also one of the most suitable among 
the associative models for paralleli zation. In the 
algorithm level the the regular computation can be 
excellently paralleli zed. The heavy grain MCN 
computation, which generall y puts MHAC at odd 
with mainstream NN and AM models, can also be 
accelerated diminising the difference using logic level 
paralleli sm. 

Capabilit y wise, MHAC model expands the horizon of 
distributed and cellular computing for its abilit y  of 
dynamic focus or search locali zation. Interestingly, 
even as a conventional adaptive filter, MHAC has 
demonstrated superior convergence and capacity than 
many other AAMs (Hopfield, BAM, fuzzy-ART, etc.). 
For example, experiment has demonstrated that 1024 
randomly generated patterns each with 4K elements 
can be associatively enfolded on a MHAC memory of 
12K bytes and can be recalled with less than 4% error 
[11,4,6]. Thus,  not only the new applications, but the 
results of this paralleli zation can equally benefit the 
conventional applications of current AAMs.   

Notably, besides scalabilit y on conventional parallel 
processors, MHAC has excellent suitabilit y for optical 
implementation. A part of this research has been 
supported by  DARPA  grant no: HJ1500-3175-0562.  

References 
[1]  Ercoscun, and K. Oflazer, Experiments with Parallel 

Backpropagation on a Hypercube Parallel Processor 
System, Proc. ICANN’91, Espoo, Finland, June 91, 
pp1465-1468. 

[2]  Gabor, D., "Associative Holographic Memories", IBM 
Journal of Research and Development, 1969, I3, 
p156-159. 

[3]  Hinton, G.E., J. A. Anderson, Parallel Models of  
Associative Memory, Lawrance Erlbaum, NJ, 1985. 

[4]  Khan, Javed. I., "Attention Modulated Associative 
Computing and Content Associative Search in 
Images", Ph.D. Dissertation, Department of Electrical 
Engineering, University of Hawaii , July, 1995. 

[5]  Khan Javed. I. & D. Yun, Holographic Image Archive, 
Intl. Journal of Computerized Medical Imaging and 
Graphics, Special Issue on Medical Image Databases, 
Vol 20 no 4, 1996. 

[6]  Khan Javed. I. & D. Yun, Characteristics of 
Holographic Associative Memory in Retrieval with 
Locali zable Attention, IEEE Transactions on Neural 
Networks (accepted). 

[7]  Petroski, G. Dreyfus, and G. Girault, Performance of 
Pipelined Backpropagation Algorithm on a Parallel 
Computer., In Proc. ESPRIT PCA Workshop, Bonn 
May 1991. 

[8]  Pomerleau, D.A., G.L. Gusciora, et. al, Neural 
Network Simulation at WARP speed: How we got 17  
Milli on Connections per Second, Proc. of IEEE 
Second International Conference on Neural network, 
v-II , 1988, pp143-150. 

[9]  Pital, I., Parallel Algorithms for Digital Image 
Processing, Computer Vision & Neural Networks, 
John Wiley & Sons, NY, 1993. 

[10]  Singer, A., Exploiting Inherent Paralleli sm of 
Artificial Neural Networks to Achieve 1300 Milli ons 
Interconnects per Second, Proceedings of the 
INNC’90, Paris, pp656-660. 

[11]  Sutherland, J., "Holographic Models of Memory, 
learning and Expression", International J. Of Neural 
Systems, 1(3), pp356-267, 1990. 


