
 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  
1 

 

Active Streaming in Transport Delay Minimization 
 

Javed I. Khan 
Internetworking and Media Communications Research Laboratories  

Department of Math & Computer Science  
Kent State University, 233 MSB, Kent, OH 44242 

javed@kent.edu 
 

Abstract 

In this paper we present a technique for 
reducing response delay for web systems, which 
is based on a proactive cache scheme. It 
combines predictive pre-fetching and streaming 
to overlap the read-time with loading time.  This 
graph-based model analyzes the hyperlink 
structure to form the prediction. It also utilizes 
data streaming to further minimize the pre-load, 
without compromising the responsiveness. The 
analysis demonstrates that such new hyper-graph 
based pre-fetching can reduce the lag-time of a 
cache system by a factor ranging from 2-10. In 
this paper, we focus on pre-fetching and provide 
the technique, the optimization algorithms and the 
simulation results. 
   
Keywords: Multimedia, proactive internet 
caching, pre-fetching, streaming, delay 
optimization. 

1.Introduction 

Perhaps, one of the key difference between a 
classical distributed system and the emerging 
network-based applications is that in the later the 
performance is not only a function of the 
application algorithm but is also heavily 
dependent on detailed network characteristics 
such as bandwidth and congestion.  

In today's internet environment, the network 
related delay range from few milli second to 
minutes. Consequently, the impact of scrupulous 
improvement in application algorithm may go 
completely unnoticed by the end user, while 
typicall y they wait order of magnitude longer 
time experiencing transfer delay. The success and 
failure of many internet-based systems and 
applications depend on the user perception of the 
net delay. 

The delay experienced by the user is 
contributed by many factors. In the criti cal path 
are network forward trip delay dominated by 
network latency, the server response time, server 
side application processing time, return trip delay 
dominated by down-stream bandwidth, and 
finall y the parsing/rendering time at the client. 
The most commonly used approach for reduction 
of response delay is to increase the network 
bandwidth. However, quite often it is also the 
most expensive solution. The higher the 
bandwidth typicall y the lower is it's overall 
utili zation.  

A more effective means for reduction of 
response delay approach is network caching. 
Caching allows relatively static and repeatedly 
used documents to be stored in close proximity of 
the Browser. Cache can be placed right at the 
Browser, and/or few hops away to be shared by a 
group of clients. Cache reduces the overall path 
latency and removes the delay due to congestion 
in links upstream to the criti cal path. 

In this paper, we investigate yet another 
approach for reduction of response delay- link-
ordered pre-fetching. Typicall y, the rendering and 
reading time of a document is also quite large and 
is in human perceptual time scale. Potentiall y the 
transfer delay of subsequent documents or 
document components can be overlapped with the 
rendering and reading time of previous 
documents. 

Interestingly, caching as well as pre-fetching 
both has been extensively applied in hardware 
systems to offset high latency of memory access 
in high performance systems. Over last few years, 
driven by the growing need of reducing network 
latency, caching techniques have been proposed 
for the Internet. However, it seems hardware 
cache operates in relatively more predictable 
environment, where the design variables such as 
page size, and access time differences among 
various storage stages are limited to few classes 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  2 

only. In comparison, the variabilit y of file size, 
and network response lag faced in the internet are 
quite broad, also they are diff icult to predict. The 
only advantage in the internet cache is that here 
the write back from primary to secondary storage 
is simpler as generall y there is typicall y one 
writer.  

However, studies indicate that principal of 
localit y is less conspicuous in web access. A 
number of recent studies, with various innovative 
caching schemes reports caching eff icacy in the 
rate of 30-60%  [1, 11, 9, 5], where a modern 
hardware cache can achieve hit rate over 90%. 
Perhaps, one of the key reasons is that a large 
number of resources are new references. In the 
web, there is no short-term iterative construct in 
the causal chain above. In addition, due to the size 
limitation, resources those are fetched into the 
cache cannot be kept indefinitely, till it i s 
requested again. Consequently, the hit ratio is 
significantly poorer than processor caches. 

In this paper, we present a dynamicall y 
deployable proactive cache system that 
continually analyzes the link dependency and 
relative access frequency of documents around 
the access neighborhood of the clients. According 
to Markov potential based analysis it pre-loads 
selective high li kelihood documents in the 
background, while the client consumes the current 
document in the foreground. Unlike the few other 
techniques proposed so far, our system analyzes 
the hyperlink structure for prediction. We call it  
hypergraphic prefetching. 

Another novel feature of this pre-fetching 
technique is that it uses fragment streaming to 
minimize the pre-load, without increasing the 
response-lag. Each resource is dynamicall y 
divided into two parts the lead and the stream 
segments. The available bandwidth 
correspondingly is also separated into two sub-
channels; feed channel for loading the streaming 
segment of the current resource, the fetch channel 
to proactively load the lead segments of future 
resources.  

The size of the lead segment is computed 
optimally so that a minimum but just suff icient 
amount of data is pre-fetched and buffered. The 
rest is fetched by streaming, if and when the 
media is traversed. With the lead segment pre-
fetched in the cache, streaming matches the 
consumption rate. Thus, it deli vers content 
without any additional response delay.  

2.Related Works 

The internet caching has been studied for 
quite some time [1,11,9,5]. However, the study of 
pre-fetching is quite recent. In one of the 
pioneering studies, Kroeger et. al. demonstrated 
that with ample knowledge of future reference a 
combined caching and pre-fetching can reduce 
access latency as much as 60% [9]. The year 
after, Jacobson and Ca [8] proposed a method 
based on partial context matching for low 
bandwidth clients and proxies. Last year, 
Palpanas and Mendelzon [10] proposed an 
approach associated with servers. Both of these 
methods used variants of partial matching of 
context (past sequence of accessed references) for 
prediction of future reference. These methods 
proposed prediction based on reference history 
aggregated among the cached references.  

Compared to the preceding techniques, we 
demonstrate that the prediction model can be 
made much more effective by bringing in the 
hyperlink reference structure among the 
neighboring web resources. Indeed, the freedom 
of context switching is strongly bounded by the 
underlying link pattern of the hyperspace. As we 
will demonstrate, with such hyperlink structure 
based prediction model, the access lag can be 
reduced by significant factor. A comparable 
example will be the 'Google' web search engine 
[3] that demonstrated significant increase in 
search eff icacy by directly weighing in the 
hyperlink reference patterns among documents.  

In a related work, Crovella and Bradford [4] 
studied yet another advantage of pre-fetching- the 
reduction of burstiness of network traff ic. Bangla 
et. al. proposed pre-fetching of only modified 
cached content to reduce cache communication in 
their proposal of 'optimistic-delta' [2]. [7] has 
proposed XML extensions for document 
fragmentation, which can potentiall y be applied 
for streaming resources of wide classes. Also, in 
this work, we are building analytical models of 
the system to understand its characteristics. Prior 
works in the area are mostly empiricall y 
validated. 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  3 

3. Hypergraphic Pre-fetching  

3.1. Access Model 

First, we describe the hyper-graph notation. 
Fig-1 shows the model. Each node in the hyper-

graph represents a resource. Nodes are connected 
as per the embedded hyperlinks. The reader 
moves through a set of nodes in this hyper-space 
called anchor nodes. When a client (reader) 
program is active, the idea is to track client's 
movement or anchor sequence in this hyper-
space, monitor its neighboring regions, and pre-
fetch a subset of these nodes with high li kely-
hood of traversal into the proactive cache. The 
pre-fetching is done in the background while the 
current resource is being consumed by the client 
to overlap the loading with the reading time. 

 H(VH,EH) denotes the entire hyper-space. 
However, a subgraph h(Vh,Eh) is the visible sub-
graph of H about which the cache has link and 
node information. However, for tractabilit y, entire 
h(Vh,Eh) is further pruned. Before each 

optimization phase, a pruned sub-graph called 
roaming- spheres graph G(VG,EG) is used for actual 
optimization. Although the node and link 
information of h(Vh,Eh) or G(VG,EG) is assumed 
available, but there content, however may not be 
resident in the proactive cache at the beginning. 
The algorithm uses G(VG,EG) to determine the 

pre-loading schedule of the nodes within it. A 
subset of the nodes in G(VG,EG) is eventually 
preloaded and added in the cache. C (VC, EC) 
represents the part of hyperspace, which is finall y 
resident in the cache. Each node in h(Vh,Eh) has 
read-time and size attributes. Each link in it has a 
transition frequency f(i,j) associated with it. Links 
are bi-directional and transition frequencies are 
asymmetric.  

3.2. Transport Model 

The resource transport model has been 
designed after the generali zed streaming delivery 
of content. Each resource has two parts the lead 
segment and the stream segment. The available 
bandwidth is correspondingly separated into two 

Fig-1: The Markov Predicton Network used for cache prefetching. The roaming- spheres (N5,e2) and (N5,e2) show two 
analysis graph for two pruning thresholds both anchored at node N5. The priority algorithm ranks nodes 5-12 (or 5-17 
based on the selected threshold). The pre-fetch mechanism loads the nodes including N8 accordingly, while the reader is 
reading N5. By the time reader completes reading N8 is preloaded and server. When reader moves to N8, a new roaming- 
sphere is formed to build modified ranking.  

N5 

N9 

N6 

N12 

N11 
N7 

N13 

N19 

N20 

N14 

N27 

N26 

N21 

N22 

N15 

N17 

N18 

N25 

N24 

N23 

N1 
N2 

N4 

N3 

N8 

N10 

N16 

Roaming Sphere(N5,e2) 
 

Roaming Sphere(N5,e1) 
 

Roaming Sphere(N8,e2) 
 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> 4 2 4 1 + 4 < 6 3 1 3 ? 3 < @ @ A / B A C = . D

 

  4 

sub-channels; feed channel for loading the 
streaming segment of the current anchor, the fetch 
channel to proactively load the lead segments of 
resources from the focus zone. Fig-2 shows the 
event sequence for the transport model. We 
assume that Dtotal is the size of a resource, Dpreload 
is the bytes in lead segment and Dstream is the 
bytes to be streamed. The ratio of bandwidth 
allocated to sub-channels is α. Both α and the 
corresponding actual amount of Dstream can be 
dynamically adjusted based on optimization 
objectives. Streaming reduces the amount of date 
that is pre-fetched. 

Fig-2 shows the analysis model where we 
group the nodes in the roaming-spare graph into 
three sets. The first is the anchor node itself 
which is traversed at stage i-1 A i-1. The second is 
the set NH which includes the nodes those have 
been assigned higher priority than the anchor 
node that actually will be traversed at stage i, and 
finally the set NL, which includes the nodes those 
have been assigned lower priority than the anchor 
node at stage i-1. While, the client is rendering 
anchor A i-1 , the nodes of the stage i, are loaded 
in order of certain priority Pi(n). If the set Ni

H is 
large, then the effectiveness of pre-loading 
disappears. If, the client completes reading the 
previous anchor node, while either NH or NL is 
being loaded, the system moves to the next stage.  

3.3. Analysis 

The model above provides the opportunity to 
answer a host of design questions. First and the 
most important one is what is the best pre-
fetching sequence of the nodes that will minimize 
the expected read-time lag for a given network 
bandwidth? In this paper, we assume that the 

cache system is constrained by the bandwidth. 
Consequently, we deal with the above issue. 
Below we present the results: 
 
Theorem-1: (Branch Decision) In any node if, 
T1, T2, T3, … Tn are loading times, and if f1,, f, 
f3,… fn,  are relative frequencies of the link 
traversal, the average delay is minimum if the 
links are assigned priority Pi  and the node with 
the highest Pi is loaded first, where, the priority is 
computed as: 

i

i
i T

f
p =  

...(1a) 

 
As a corollary, the above result can be extended 
further for a tree where the node priority can be 
determined for node N i from the link traversal 
frequencies of the path. If 1,2,3,4..i are the links 
in the path from root (current anchor) to the node 
Ni. The priority function should be computed as: 

i

i
i T

ffff
p

...... 321=  
...(1b) 

  
For general graph G(VG,EG) where the node 
priority can be determined by computing order-n 
Markov potential Qi for a node Ni, and where  the 
priority function should be computed as 

i

i
i T

Q
p =  

...(1c) 

 
Corollary-1: In a chain a zero delay streaming is 
possible for unit n in this sequence, if the 
cumulative presentation time Tp,i for units before 
n, is larger than the cumulative loading time TL,i 
of units up to n. The entire sequence of N 
elements is zero delay if the following is true for 
all n up to N: 

A0 A1 A2 Ar 

}1
HN

1
LN }

P1(n) 

}
}

2
HN

2
LN

r
HN

r
LN

}
}

P2(n) Pr(n) 

Fig-2. During each cycle, nodes in the roaming- spheres graph G(VG,EG) are ordered according to 
their Markov potential P1(n). The anchor nodes in each stage are shown as A. Each time, a set of 
nodes receives higher priority, and another set  receives lower. The performance also depends on the 
relative size of these sets. 
 
 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � � � � ����� ��� � � � � � � � � ����� � � � �
� � � ��� � �	� � � ��� � � � � � � � � � � � �  � � 
 � � � � � ��� �	� � � � � � � � � � � � � � � � � � � �  � �	� � � � �
! � � � � � � �  � � � � � � � � " � # " $ � � %

 

  5 

 

∑∑
=

=

−=

=
>

nk

k
kL

nk

k
kP TT

2
,

1

1
,  

...(2) 

Further, following expressions can be used to 
determine the size of the lead segments. Let us 
assume that the margin time=0, and α is the ratio 
of bandwidth allocated to the feed channel to that 
to fetch channel. We use the constraint that the 
reading time must be equal to the streaming time. 
Consequently, given a rendering rate Rrender the 
amount of data that has to be pre-fetched for a 
resource is given by (3): 






 ⋅−=







−=

render

channel
total

render

feed
totallead

R

B
D

R

B
DD

α
1

1

 

...(3) 

Corresponding pre-load time is given by: 











−=

=

renderpreload
total

preload

preload
preload

RB
D

B

D
T

α1
 

...(4) 

Only the Dlead amount of data should be pre-
loaded for min delay browsing. It takes Tpreload 
time overlapped with previous reading time. 

3.4. Schema  

Now we briefly describe the action of the pre-
fetch strategy designed on the above results. Each 
time the cache detects a new user-agent 
(embedded in HTTP header) it initiali zes a new 
pre-fetch session for tracking its roaming sphere. 
The pre-fetch algorithm first computes G(VG,EG) 
by using a tree view of the graph. In this scheme 
the conditional frequency of the links in h(Vh,Eh)  
is computed according to equation-(1b). Links 
reachable using multiple path is given the sum of 
the two scores. The prunned roaming sphere sub-
graph G(VG,EG) is then determined by 
considering links with loading score above a 
small cut-off threshold E. We call E the reach of 
the current roaming sphere. 

The algorithm then computes the Markov 
potential Qi for each node in the G(VG,EG) 
network based on local relative transition 
frequency. Then it sets the pre-fetch priority of 

the nodes according to equation-(1c) with respect 
to the current anchor. The pre-fetch mechanism 
retrieves documents following this loading order. 

However, it does not try to pre-fetch the entire 
document. Rather based on the bandwidth 
allocated for streaming, it determines the size of 
the lead segment for each document using 
equation-(3). It only pre-fetches the lead segments 
of the nodes in G, while it reads the remaining 
part of the current anchor via stream sub-channel. 

The loading order remains valid until the 
reading time of current anchor node N. Upon 
completion of reading node N, a new node is 
traversed. The algorithm maximizes the li kely-
hood that that the new node is already in the 
cache. At this new anchor point, the focus graph 
is reevaluated. The subsequent evaluation is 
incremental. The pre-fetched nodes reveal more 
nodes from the hyperspace. In addition, the new 
anchor point changes the preference weights. 
Consequently, in this new graph, nodes 
downstream are upgraded by 1/f(i,j), while nodes 
brunching out from upstream are downgraded by 
factor 1/f(j,i). 

3.5. System Description  

An associated and interesting system design 
problem in the proposed pre-fetching scheme is 
the estimation of the link traversal statistics. The 
problem has two components: the collection and 
the propagation of access statistics. A number of 
strategies can be potentiall y used. We are 
currently investigating a few. Below we briefly 
outline two approaches.  

In the transparent client scheme, a server side 
plug-in can collect the access statistics for its 
documents spanning the hyper-space local to it. 
Even without any explicit notification mechanism 
from the clients, it can detect the source of the 
traversals by analyzing the reference log. Perfect 
frequency statistics, can also be collected by 
embedding the referral source identification in the 
request message of the transport protocol. From 
the source URLs, the server plug-in can track the 
reverse links. This can be implemented within 
current HTTP 1.1 by using the 'referer' request-
header field [6]. We suspect the system does not 
have to be meticulous. We estimate keeping 
statistics only for the top links for the  'hot' 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � � � � ����� ��� � � � � � � � � ����� � � � �
� � � ��� � �	� � � ��� � � � � � � � � � � � �  � � 
 � � � � � ��� �	� � � � � � � � � � � � � � � � � � � �  � �	� � � � �
! � � � � � � �  � � � � � � � � " � # " $ � � %

 

  6 

documents will be enough to create visible 
performance improvement. 

Two strategies are possible for the 
propagation of access statistics. The statistics can 
be embedded right into the markup documents as 
a special link attribute. This can be done in XML. 
An extended HTTP directive can make pre-
fetching cache systems aware of the embedded 
attributes, conveniently tripping the pre-fetch 
loading mechanism. In an alternate scheme the 
statistics can be appended directly as a vector 
attribute in the response header, without 
modifying the content. (it too can be implemented 
using reserve pool without HTTP protocol 
extension). 

The collection mechanism can be extended to 
a larger hyper-space by letting a group of co-
operating server cache systems to periodically 
exchange the local link statistics and build up 
statistics for larger hyper-spaces spanning a 
community of servers. The communication can be 
potentially minimized efficiently. Since the link 
sinks already have the URLs of the link sources, 
sink server plug-ins can initiate occasional 
communication, and deliver the statistics directly 
to the sources corresponding to heavy access 
links. We are currently investigating how this 
expanded model of co-operating hyper-space 
statistics collection and propagation model can be 
deployed and managed with Active Net.  

4.Results 

We have performed a series of simulations of 

the proposed system to evaluate the performance 
under a number of scenarios. To measure 
responsiveness we observed normalized 
responsiveness (NR) (y-axis). It is the response 
lag experienced by the proposed hypergraphic 
pre-fetch scheme normalized with that 
experienced by the scheme without pre-fetching. 
It indicates the factor by which pre-fetching 
scheme reduced the response lag.  

The reduction in response lag is dependent on 
the ratio of network bandwidth to the rendering 
rate (such as text reading speed, play rate for 
audio or video). We call this ratio normalized 
rendering rate (nRR). Fig-3(a) plots the 
performance of the system when the ratio varies 
from .01-.1. Fig-3(b) shows the plot for content 
type with faster rendering rate factor close to 1. 
The former approximately represents the 
uncompressed text reading scenario on about 
10Kbps network, typical of low speed wireless 
network. The later represents compressed 
multimedia presentation on WAN, which are 
typically rate matched for that speed.  

As evident in both the cases, the response lag 
improved in the range between 10-2. In both 
cases, we measured the improvement of 
responsiveness. As expected, the gain from pre-
fetching is more dramatic for slow rendering 
content.  

&
'
(
)
*
+ ,
+ -
+ .
+ /

, 0 1 0 2 0 1 0 3 0 1 0 4 0 1 0 5 0 1 6 0 1 6 2
7 7 8 8 9 :9 : 8 8 7 7 ; ; 9 <=79 <=7 > > ? ? 8 8 @ @ A A 7 77 7 B

C CD DE
F
E
FG GHEI HEI
J JD DH H
D DE EE E
K KH
C
H
CL L

M N O P O Q N
R S T U T V S
R W T U T R W
V S T U T R S
W S T U T X S

Y Z [ \ ] ^ _ ] ` a
b c d e f c g h e c i j

k
l
m
n
o
p q
p r
p s
p t

u v w x y z { | } ~ | ~ � � � � � �
� � � � � � � � � �� � � �� � � � � � � �� � � � � � � � � �� �

� �� �� �
� �� �
� �� �
� �� �� �
�� ��� ��
�
�
��
� ��� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
  ¡ ¢ £ ¤ £ ¤
  ¡ ¥ £ ¤ £ ¤
¦ § ¨ © ª © ª
« ¬ ­ ® ¯ ® ¯
° ¬ ­ ® ¯ ® ¯

± ² ³ ´ µ ¶ · µ ¸ ¹
º » ¼ ½ ¾ » ¿ À ½ » Á Â

Fig-3(a) Responsiveness for slow rendering 
media. 

 
 

Fig-3(b) Responsiveness for line rate matched 
media.  

 
 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  7 

The performance of the system is also affected 
by the accuracy of the prediction model. As 
shown in Fig-2, we assumed various amount of 
prediction error. Distribution vector X-Y-Z 
respectively represents the bytes fetched before 
anchor (for nodes ranked with higher priority than 
the actual anchor), the byes in actual anchor 
(eventually the bytes which are read), and the 
bytes fetched after the anchor (for nodes ranked 
with lower priority than the anchor node). 

Fig-3(a) plots the curves when in total 71 units 
(X+Y+Z=71) have been fetched, but with various 
High and Low priority bytes distributions. As 
shown the responsiveness improved in the range 
of 1-15. Clearly, with lower size of pre-anchor 
bytes resulted in sustained performance 
improvement even with high rendering rate. In 
Fig-3(b), we kept Y=1 and Z=1 which varied X 
from 0-5, indicating perfect prediction (no pre 
anchor byte) to almost five times pre anchor 
bytes. As evident, the system responded faster 
almost by the factor 10-2 times. The above plots 
demonstrate the performance improvement 
without streaming. 

Fig-4 plots the potential reduction of the lag 
that can be achieved by combining streaming. It 
plots the lag-time (normalized by the lag-time of 
cache without pre-fetching). It shows the factor 
(y-axis) by which the lag time improves with 
respect to percentage of bandwidth (x-axis) 
assigned to the fetch channel (LBF). 

It also plots 4 curves showing the performance 

for the ratio of rendering rate to a total bandwidth 
varying in the high range from 1.0 to 2.0. We also 
used high odd in the distribution with vector 0-1-
1. Without streaming (full bandwidth allocated to 
fetch LBF=1) the responsiveness improves by a 
factor of 1.66-7.5. As evident, with the 
incorporation of active streaming, the read-time 
lags now decrease by another factor of 2-10. Also 
interestingly, we achieved the above performance 
by tracking a relatively small focus graph 
consisting of 10 nodes associated with each user.  

5.Conclusions & Current Work 

The effectiveness of pre-fetching is 
particularly significant for the internet reference 
compared to hardware instruction. The rate of 
repetition of reference is quite low in web cache, 
compared to hardware cache. It seems that a key 
reason might be that web-reference pattern does 
not have any looping construct. Such looping 
construct is quite common in hardware instruction 
reference. Basic caching alone is only effective 
for repeat reference and cannot help in reducing 
the access lag for new references. The pre-fetch 
prediction model on the other hand, reduces 
access lag in the face of new document 
references. Thus, pre-fetch model appears to be 
even more attractive technique for the internet 
domain.  

In this research we have presented a pre-fetch 
scheme, which when integrated with streaming, 
apparently promises an optimum reduction in 
wasted pre-fetch, as well as ensures 

S=400, Dist: 0-1-1, Model 1/3/3/3

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

LEAD BANDWIDTH FACTOR (LBF)

R
E

S
P

O
N

S
IV

E
N

E
S

S
 (

N
R

)

1

1.2

1.4

2

Fig-4  Effect of Active Streaming 
 
 

RR 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  8 

responsiveness of the web system. We have also 
attempted to obtain an analytical model of the 
scheme. We have demonstrated how to obtain the 
minimum response lag through the Branch 
Decision Theorem based on the estimate of the 
node access frequencies.  

Fundamentall y, the eff icacy of the model, 
however, will depend how well the statistics 
collected on the past access frequency can reflect 
the access frequency for which the theorem 
optimizes. Although, such stationary nature of 
underlying stochastic process has been safely 
assumed in wide range of other engineering 
systems, an interesting next step will be to carry 
out empirical analysis designed to measure the 
site-wise eff icacy of such prediction in web. 
Interestingly, the frequency function can be 
generali zed into other priority functions (such as 
priority of clients). It will still optimize the cost 
on that basis.  

We have also outlined techniques by which 
the scheme can be implemented. By all 
li kelihood, current transport protocols (such as 
HTTP, XML) will continue accepting innovative 
additions (a number of high pay off optimizations 
are already on the horizon), and therefore, their 
current constraints should not be a major concern 
in exploring new optimizations methods in such 
early stage of the technology. Nevertheless, the 
proposed prefetching can be implemented without 
requiring any major modification of the transport 
protocol. 

The pilot investigations which predate ours, 
mostly presented empirical case study (some on 
large data set found in a particular web-site), 
however without any attempt to formalize the 
problem. Consequently, it remains unknown if the 
readings can be duplicated on a different scenario, 
or which factors play how much role in the cost 
performance equation. More formal and analytical 
understanding of a problem of such importance is 
surprisingly lacking. This research is part of our 
broader initiative to fill t his gap.  

It seems the performance of an effective web 
system will eventually be built with various 
custom systems appliances. Prefetcher and server 
plug-ins for access statistics collection and 
propagation and are examples of such custom 
appliances. Clearly, the deployment and 
management of such complex systems will be a 
formidable task. As a part of our ongoing 
research, we are currently investigating an active 

net deployable stream pre-fetcher and plug-in 
modules, which can be dynamicall y launched and 
managed as active proxies in network.  

The work is currently being funded by 
DARPA Research Grant F30602-99-1-0515 
under it's Active Network initiative. 

6.References: 

[1] Marc Abrams, Charles R. Standridge, G. 
Abdulla, A. Edward, Fox and Stephen Willi ams, 
Removal poli cies in network caches for World-Wide 
Web documents, ACM SIGCOMM '96. Stanford, 
CA, 1996, pp 293-305. 

[2] G. Banga, F. Douglis, and M. Rabinovich. 
Optimistic Deltas for WWW Latency 
Reduction. In Proc. 1997 USENIX Technical 
Conf., pp. 289-303. CA, January, 1997 

[3] S. Chakrabarti, B. Dom, R. Kumar, et. al, 
Hyperserching the Web, Scientific American, 
June 1999. [Last retrieved from: http:// 
www.sciam.com/1999/0699raghavan.html]  

[4] M. Crovella, P. Barford, The Network 
Effects of prefetching, Proc. Of IEEE 
INFOCOM, San Francisco, USA, 1998.  

[5] F. Douglis, A. Feldman, B. Krisnamurty 
and J. Mogul, Rate of Change and Other 
Matrices: A Live Study of the World Wide 
Web, Proc. Of USENIX Symposium on 
Internet Technology and Systems, Barkeley, 
December 1997, pp-147-158. 

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk 
& T. Berners-Lee, Hypertext Transfer Protocol 
HTTP/1.1, RFC 2068, January 1997. 

[7] Grosso,  Paul, Daniel Veill ard, "XML 
Fragment Interchange", W3C Working Draft 
1999 June 30, [Retrieved from: 
http://www.w3.org/1999/06/WD-xml-
fragment-19990630.html] 

[8] Q. Jacobson, Pei Cao, Potential and Limits 
of Web Prefetching Between Low-Bandwidth 
Clients and Proxies, 3rd International WWW 
Caching Workshop, Manchester, England, June 
15-17 1998. 



 � � � � � � � � � �	� 
 � � �	
 � � � � � � � � � � � � � � � � �
��� � � � � � ��� ��� � � � �  � !���!  �� ! � " # � ! $ � ���&% ' ' ' $
(*) + ,�+ , -	. / + ,�0 1 + - 2 1 3 + ) 4 1 3 5 6 4 1 7 - 2 - 1 8 -�4 1	9 3 2 3 5 5 - 5 9 2 4 8 - : : ) 1 ; < 0 6 9 9	. = = = <
> ? @ ? A B ? C D E A E F E C G G H I J K L M N O

 

  9 

[9] T. Kroeger, D. D. E. Long & J. Mogul, 
Exploring the Bounds of Web Latency 
Reduction from Caching and prefetching, Proc. Of 
USENIX Symposium on Internet Technology and 
Systems, Barkeley, December 1997, pp-319-328. 

[10] P. Themisoklis & A. Mendelzon, Web 
Prefetching Using Partial Match Prediction, The 4th 
International. Web Caching Workshop, San Diego, 
1999. 

[11] Duane Wessels and K Claffy, ICP and the 
Squid Web Cache, IEEE Journal on Selected Areas 
in Communication, April 1998, Vol 16, #3, pages 
345-357. 

 


