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1.ABSTRACT

This paper investigates parallel and distributed implementation of a class of associative search where during
similarity evaluation the scope of the search is dynamically localizable into a sub-set of the pattern elements. Thisis
an important search type with numerous applications ranging from content-based image retrieval, adaptive pattern
matching, digital library to vision. Current parallel and distributed neural models based on scalar product rule of
synaptic efficacy can not conveniently redlize it. In this paper, we identify the prerequisites, analyze the current
models and demonstrate a new paradigm of parallel and distributing computing that can realize this search.

2.INTRODUCTION

Traditionally, artificial neural networks (ANN) are known to be applicable in three major application categories, (i)
adaptive classification or filter (ii) fast optimization, and (iii) associative memory. However, an intimate look at the
success stories of neuro-computing reveals that most of them are confined in the area of adaptive classification or
filtering [Carp89, Kulk94]. Hardly any real application flourished which can conveniently take advantage of the
associ ative memory characteristics of neural models.

Since the invention of first artificial neuron by Mcculloch and Pitts, main research emphasis grew in the learning
aspect of neuro computing. Increasingly more intricate and complex properties of learning phenomena have been
pursued in great depth. Versatility (how arbitrary complex associations can be learned), efficiency (how more
patterns can be learned), learnability of causality and tempora relations (Grossberg 1967, Klopf 1987), sdlf-
organization (Kohonen 1987, Oja 1982), autonomous unsupervised adaptation (Grossberg 1976, Carpenter &
Grossberg, 1987) are just few examples of the intricacies through which research in artificial learning matured
[Gros67, Klop87, Koho89, Oja82, Gros76, CGMR92]. Surprisingly, during this period of vigorous emphasis on the
learning aspect of ANNSs, very few attempts had been made to examine their recollection aspect, other than
assuming avery simple modd of retrieval. AlImost all the proposed learning model s since McCulloch and Pitts have
been constructed on the assumption of asimple and restricted retrieval scenario, where the sample of the content that
is used during query is a close replica of the target. However more complex and versatile retrieval formalism is not
only conceivable but also seemsto be an integral part of natural associative memories.

In this paper, we take a look into associative computing from the integrated perspective of retrieval and learning.
Theretrieval capability of our particular interest is the ability of an AAM to dynamically localize match. However,
we will also investigate the ability of an AAM to provide a meta-feedback on the quality of match. Dynamic search
localization refers to a process where patterns can be retrieved on the basis of similarity within any user given subset
of pattern elements. A symmetrical ability isthat the external user (human, or any other driver computer) receivesa
quality feedback to interactively evaluate the patterns regenerated by the memory. These interaction abilities
(receive attention information, and provide quality feedback) are important to make associative memories
applicable in many computationally daunting problems of today such as object-oriented content based information
retrieval, adaptive pattern matching with incomplete pattern, and retrieval with very small cue.

Current artificial associative memories (AAM) based on classical scalar product rule of synaptic efficacy are unable
to support either aspects of such retrieval. Recently, an instance of a parallel and distributed computing network with
these two critical abilities has been demonstrated by [Khan95]. It is based on a digital adaptation of optical
holography and its hyperspheric representation. In this paper we present the result of a broader theoretical
investigation that now finds the meta-class characteristics of such a memory, within which other instances of
attentive/interactive memories can be invented.

In this paper, wefirst explain the search typesin the context of parallel and distributed associative computing. Then
in section 4 we analyze the constraints of current AAMs. In section 5 we demonstrate a new generalized
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representation and class of cell transfer functions which can overcome these deficiencies. Finally, in section 6 we
show the implications of thisimportant search capability which can benefit numerous applications.

3.ASSOCIATIVE MEMORY

Let, S =[s' s)'...si] isadtimulus pattern vector and R =[r/ rf'...r}] isany response pattern vector.

Here, the superscript refers to index of the pattern vector, and the subscript refers to the particular element in the
pattern vector.

Definition (Associative memory): Given a set of stimulus pattern vectors S={S“ |l<su< P} and a set of
response pattern vectors R = {R“ | 1< u < P}, an associative memory is capable of learning the correspondence

between a stimulus member S* [0S and a response member R* JR in such a way that, given a query pattern

S itcanretrieveapattern RR = R" suchthat R' OR, and S° isclosestto S' 'S according to amatching

criterion D.
An associative memory system (Fig-1) is comprised of (i) a learning algorithm Alearn which converts all the

{S“ , R“} associations into some internal representation, (ii) a physical storage medium and representation
formalism AM to store the associations, (iii) a decoding algorithm Aretrieve to recollect stored information R®

from a given query stimulus SR, and (iv) amatching criterion D to measure the closeness of stimulus patterns to
the query pattern.

4. ATTENTIVE QUERIES

Concept of pattern distance is central to the search operation of any memory. Equation (1) states a generalized
measure of such compositional distance:

SS a\ﬂddmts s)}wherea[)]a\ﬂ EIE

Where, dist [)]lsthed|stancemeawrefunct|on (DMF). It can be any arbitrary function with the constraint that it is
, and symmetric for all (s 'S ) pairs. M is a set operator with scope G.

monotonic with respect to

Generally, a summation is used such that M = Z{[}] The function 5( is modulator function for the set

members. The combined function O ([)] is the distance composition function (DCF). It can be any function with the
congtraint that it too is monotonic with diSt([)]. Finally, the overall function is required to have the property, that
D(S“,S“)=C,Wherecisaconstantindependent of specific pattern index | .

Given an sample pattern S? an associative memory tries to converge to the closest learned pattern. Let
AR =[A2 AS...AT] be the modulator vector. Consequently, based on the matching criterion of equation (1), we
now define a generalized associative memory:

Definition (type-A AAM): Given the modulator vector /\Q, a typeeA AAM can retrieve response pattern
R® OR"™, whereits associated stimulus pattern S is close to the query pattern S@ in the following sense:

D(s?, 5™, A%)= m? n a\% )\?dist(s‘?,s")%
u t

Modulator vector can be decided at post learning stage, so that the memory can modify the significance or attention
level of each pixels dynamically on demand with analog resolution (and will be referred as attention field in the
subsequent discussions).

Two other subclasses of this memory with the definitions below are also of interest to us. For the special case, where
the modulator vector elements are restricted to binary enumeration, the modulator vector can be substituted by a



Publi shed in the Proceedings of the
World Congesson Neural Networks, WCNN96. July 96

scope restrictor function F °ON representing a subspace of the total dement space N. Finally, a further special
case with unary attention of the above two types can be defined where the scope is not restrictable.

Definition (type-B AAM): Given a dement subset FQON, a type-B AAM can retrieve response pattern
R¥ OR"™, whereits associated stimulus pattern S is close to the query pattern S2 in the following sense:

p(s2,s™,F%)=min ﬁ{}] Aodist(s?, s
u t L

Definition (type-U AAM): A type-U AAM can retrieve response pattern R*OR™ , Where its associated stimulus
pattern S is close to the query pattern S2 in the following sense:

D(s°.S™)= mZi n E\N/I dist(se, )

Y
N
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Fig-2 Basic Neuron Cell*

Our objectiveisto investigate the realizability of type-A/B memory within parallel and distributed computing.

5.RETRIEVAL IN CURRENT MODELS

5.1. Current AAM and Artificial Nurode

Thevariety of architectural configuration and learning techniquesthat can be interpreted as a distributed and parall€l
model of artificial associative memory is staggering. However, the cell architecture of Fig-2 and the transfer
function of equation set (5) together specify what can be almost unquestionably considered as an essential building
blocks of any ANN or AAM.

yi =g(wij,s)=>wijsi+bi and &~ = ()

! Aninteresting question is that why in the first place, McCulloch and Pitts decided to use a function (transfer
function) of the form of a weighted sum as a building block? Possibly, because of its resemblance to the conjunctive
normal forms of first order logic.
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Here, [§] represents the inputs to this cell and generally they assume valuesin the rangefrom 0to 1 or from -1to 1.
This cell has remained virtually unaltered since itsinvention by McCulloch and Fitts. In this paper, this cell will be
referred as MP-neuron, and its transfer function as the scalar product rule of synaptic efficacy (SPRSE). Current
AAMs vary among themsedlves based on (i) the pattern of interconnection network that connects these cdlsin a
network (ii) mode and scenario of learning and/or (iii) the specific type of non-linearity function f(). Within the
scope of this paper, we are interested in the underlying function that is optimized by the combined dynamics of the

algorithm pair { Alearn:Aretrieve}, or the matching criteria D .

5.2. Retrieval Type

The optimization criteria of existing neural models directly belong to type-U category. Models those use Hebbian
class of learning maximize global dot-product of the patterns [Koho89, Grost9, Klop87, Sang89]. On the other
hand, the modelsthose use LMS class of learning maximize global mean square error [WiH060, RUHW86]. There
are also other distance measures which have been used in matching criterion (such aslikelihood-ratio, entropy, etc.).
Hopfield has given a unified perspective and demonstrated that all the neural networks minimize some form of
energy function [Hopf82]. The key features to note in all of these functions are (i) the set operator is a summation

process M = Z{[}] and (ii) the scope G of the set operator is all-element-inclusive and is based on entire element

space or G=N, and (iii) the modulator function is only a function of distance 0 = dist([)]. These properties of
existing neural computation models together makes them a type-U memory.

5.3.  Non-Optimality of Conventional AAMs

The reason that conventional AAMs have not succeeded in supporting Type-A or Type-B search liesright at the
heart of conventional neurocomputing: the scalar product rule of synaptic efficacy. It is surprising that, despite the
invention of so many artificial neural network (ANN) models over the enormously productive fifty years following
McCulloch and Pitts, the rule specifying the transformation of signal of a neuron has remained unaltered [Carp94].
We now look into the difficulties of current AAMs. We show:

An associative memory constructed by interconnecting cells with the scalar product rule of synaptic transmission
specified by (5) can not realize the retrieval of type-B, or type-AZ.

The demonstration has been constructed in two parts. In thefirst part, it isshown that anetwork realizing all dement
inclusive scope of optimization cannot converge to a correct result with respect to the RCA type-B and type-A
search criterion. In the second part, it is shown that the scope of the optimization can not be modified during query
for any network which is based on MP-neurons with a SPRSE transfer function.

Part 1 (Problem of All-inclusive Optimization): Let us consider a trained network, which has memorized two

paterns S' =[5 Si...57] and S* =[S’ §7...S]]. Let us divide the set of total element space N into two
arbitrary subsets A and B, such that A1 B = N . Without loss of generality let us also assume;

A B
0<< @ dist(sl, 32)E< @ dist(sl, SZ)E
Now, let us consider a query stimulus, R = [le SS ... s,?] carefully constructed in such a way that:
s’ =s when iOA
=g’ when iB
Let us also consider an attention distribution vector, A% =[A? A3...A%] where:

A2 =0.0wheniOA
=1.0whenilB

2 Procedural approaches for type-A/B search is also prohibitively expensive. Please see [Khan95] for detail
complexity comparisons.
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Now, first investigate the optimum result expected from the query of type -A. From theinitia state S?, thedistance
measure according to a search of type-A, between S? and S' is:

D(S?, S, /%)= &N Adist(s?, sl)ﬁz § dist(s®, §)E> 0
And, the distance frorln the second stimulus isI

D(S?, 52, A%)= &N Adist(s®, SZ)E: § dist(s®, SZ)E: 0
Thus, from (7a) and 7Ib): |
D(S?, S',A%)> D(S?,$2,A°)

Which implies the expected result is R® OR?.
Now let us see the actual output of a cell with above definition. The distance between the patterns according to
estimate A:

D(S%,S) = idist(s‘?,sl)
= ﬁdist(sQ,sl) + idist(sQ,sl)
=0+ idist(s‘?,sl)
Similarly, the distance measure between S° and S? isgiven by:

D(S°S%) = %dist(sQ,sz)
= ﬁ dist(s®,s°) + i dist(s®.s")

A
) Z dist(s?,5°) +0
An optimally trained network of such cellswill converge to a pattern which is at minimum distance from the query.
A learning based on LMSrule or its variant will converge in aleast mean sgquare error solution, on the other hand a

network, with Hebbian learning or itsvariant will converge to maximum dot product solution. Duetoinequality (6),
in both cases:

D(s?,s?)>D(se, s!)
Thus, from (8a) and (8b), the produced result will be R® OR". Whichisaclear contradiction to the expected result
from search of type-B or type-A. (proved)

Part 2 (Scope Inflexibility of SPRSE neuron): Let us consider, the role of any ith neuron in the network. Let us also
consider that to reconstruct the expected pattern R*, its corresponding ideal output is Z/%® = f (y\*®). The

corresponding ideal input vector is S*® =[s 's,...s,]. Let, the learned weight vector is
W' =[w, W,...w,]. Therefore, theideal weighted summation output of the cell is:

) N
yildeal — Z Vvij S + h
J

Now, if the attention vector A2 is imposed on it as a scope congtraint, then the modified and constrained output of
the cell becomes:
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y = ivvi,» 5 +h

Thus, the iJnternaI eror is:

yETor = yideal _ yconst iWij 3

Individual termsin this surrimation arein the order of O(W[$) . In addition, if:

B
B<< N,orZAi <<N

Then the overall summation itself will bein the order of Y™ JO(y“"*®) . For large N O A >>1 the sum will

behave like a random walk and the epeded value of its growth will be of the order of |Ws| H/W The eact

external error (at z) will depend on the spedfic type of the activation function f (). For any non-linearity with

unimodal first derivative function (which includesall sigmoidal and step non-li nearity used by conventional AAMS),
small internal errors will be correded but larger errors will be magnified. Thus, the actual output of this cdl will
also ke numerically off-balanced from theideal output in the order of:

Zerror = g(ziideal) _ g(ziconst) ~ O(Ziideal)
The abowe analysis is true for any cdl in a network. For z°™ JO(Z“?®), a network of non-linear SFRSE

neurons will run into avalanche magnification of error. Therefore, coll edively a network made of SFRSE rule will
fail to converge when the scopeis altered.

Synaptic Efficacy and RCA

The formal analysis of the previous fdion can aso help identifying the underlying causes of the attention
deficiency and provide important insight to its posshble solutions. We briefly summarize the key aspeds here;

(i) What is generaly referred to as the 'robustness of a ANN originates from the dfed of activation non-linearity.
However, the same non-linearity that helpsin correding error may also catastrophically amplify error.

(i) The size of the aror depends on the statistical balance between the 'corred’ versus 'incorred’ components of
error. For corred real, the aue signal strength in the query-pattern must be statistically dominant over the strength
of rest of the pattern elements.

(iii) The exact weight of a particular erroneous element is dedded by fixed veaor W . Vedor W is pre-dedded
during learning and can not be modified dynamically at query. This eiminates the posshility of multipli cative
maodification like making of synaptic inputsin proportion to their attention.

(iv) What is generally known as robustness of ANN, is more spedfically its robustness against noisy input. MP-
neurons and the lledive network built upon them, does not have dired medanism to be robust against missng
elements.

6.SYNAPTIC TRANSMISSION RULES FOR TYPE-A MEMORY

The abowe discusson reveals the difficulti es of the MP-neurons and the networks built upon them, to cope with the
query-modul ated attention over the stimulus pattern space It also provides grong indication that simplearchitedural
modification cannot solve this non-optimality of the cdl. In fact, there is no representation framework which can
accept meta-quantity attention or return meta-quantity confidence feedback. It only represents and processes the
measurement component of information.

6.1. Representation for Interaction

Thefirst step towards the solution is embedded in the representation. One of the principal requirement isto convey
to the network the notion of attention. Consider the spedal case of "don't care” (equivalent to no attention). Can we
have a representation for "don't care'? It is clear from the previous discusson that if s's are variable enumerated by
real numbers in the finite real interval 1=[1,0], the use of any real value d in this interval to convey the notion of
"don't-care" to the cdl can not purport the intended action (true even for d=0, which, may appear as a smple
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solution to this deceptively hard problem at the first look!), but merely introduces uneven bias towards two ather
attractorsin proportion to their distancefrom d.

*%

®)
Fig-4 Representation

In any linear state-spaceit isnot posshbleto oktain a point which is equidistant from all posgble enumerations of an
analog measurement. Any enumeration of 'dont-care’ (denoted by the drcle in Fig-4(a)) on areal line will always
induce undue bias towards two d the enumerations than all others (such as towards B and C, than A).

A solution to this problem isto placethe enumerations on aplane (Fig-4(b)). For example a state-spaceall owing the
enumerations to be laid out on the vertices of a equilateral triangle will all ow us to oltain a point equidistant from
threepoints, thus, all owing the mnstruction of atri-state memory with attention. Simil arly, a square state-spacewill
alow the @nstruction of a quad-state type-A/B memory. A circular state-spacewill allow construction of a analog
type-A/B memory. Where the distance from the "point of equidistant” can be used to represent the
attention/confidence. In its most generalized form sphere @n be used. Thus, a representation suitable for meta-

knowledge transformation should of the foll owing form, where H isan-dimensional (n>1) state space
s O H(6,.5)
Here 0 represents a state enumerating the measurement component of information and 3 represents the meta-

knowledge (attention for input/ memory confidence for output) component of pattern elements. Importantly, this
same representation scheme @n also ke used by the memory to convey the quality feadback. Thisis because, this
feadback in just a symmetrical quantity to attention.

6.2. Analog Summation Process

As evident from the previous analysis that the next major difficulty arises from the algebraic summation process
itself* in SPRSE. An analog summation processrequires al the mmponents to be present for its reconstruction.
Absence of any element in the summation set can criti cally hurt the outcome. Thisis particularly true for finite size
of the set. What types of set operator functions function can be used which can have robustnessin this snse?

An averaging process is certainly one of the andidate with the abowe quality. However, there is one subtle
requirement. The overal cdl transfer function must be non-linear. For a system trying to ke robust in the face of
misson elements non-linearity should be local to inputs rather than global. Let, al the quantities are now

represented in multidimensional state space H . So we will use phase notations to denote the enumerations of céll
output and input (compared to equation (5) 8, = z and 6, = §). Also let the learned weight:

- _ —iw,

W, = | ™

Where the magnitude represents the distance of the learned state from the center (point of "dont-car€"), and the
phase represents the learned enumeration. The following generalized class of "averaging” transfer function can be
used to this purpose:

Q= Fﬂ%i”%‘ 1A, F(distle W, ))Ewhere, c= i"wij =y
7 ]
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Here, F() anditsinverse F () determinethe nature of the discriminating hyperplane that maps gimulus patterns
on to the response dasss, and c is the normalizaion operator which is in some sense a sum of the dynamic
strengths of the inputs present. In each cdl, the magnitude (3, component of the output should be @mputed in

proportion of the evaluated dstance The muiltiplicative modification of the wntribution of individual elements
through modulator elements can be used to dynamically control the @ntribution of each dement. Various instances

of learning algorithms can now be designed to learn W; in H within this framework of cel dynamics.

7.CONCLUSIONS

In this paper we have analyzed the redlizability of a memory which can perform search with localized attention
within the paradigm of paralle and dstributed associative wmputing. This type of memory is applicable in
numerous pattern matching and memory retrieval problems. Some of its important implications are ill ustrated
bel ow.

Objed/Feature based Search: In any general situation when we describe simil arity, in fact the similarity is based on
some asaumed features or objeds of the pattern space rather than global pixel-to-pixel similarity. Any search that
can acocommodation such underlying assumptions of objed based simil arity would require locali zation.

Dynamic Attention: One of the most important asped of localization based retrieval that we are wncerned with is
the dynamic spedfiahility of the field of locali zation. If a spedfic distribution of attention is given during encoding
at pre-learning stage, a conventional AAM might in some situations (if it is aso refleded in the statistics of the
training examples) is able to hard-encode it in the learned synaptic weights. However, oncethe learning is over, the
distribution of attention can not berecast during query. For agiven learning, it acts asadeterministic machinewhere
each initial state flows into a pre-determined single attractor. Conventional AAMs have no medanism to
accommodate post-learning change in the distribution of attention*.

Managing Incomplete Information: Dynamically localizable search is also critically important in the processng of
incomplete information. Notably, this type of imperfedion is quite different from the ase of noisy information. In
former case, some extra information is avail able about the location of the missng elements. A pattern matching
machine which can not localize its sarch, can not take advantage of this extra information and consequently
converges to a solution of lesser optimality for the avail able amount of knowledge®.

Statistical Strength of Effedive Cue: A serious consequence of the inability of localize search is the inability to
work with a small cue. For aimost all NNs, as the number of error bits approach approximatey just 40%, the
probability of corred recll vanishes darply irrespedive of the sophistication of the learning algorithms.
Experiments publi shed by many researchers contains the fingerprint of such pure statistical nature of neural network
convergence* [Talo90, Hopf82, MiFa90, Kuwo91] (although, it apparently always managed to escape pursuation).
Apparently, there lies a fundamental statistical dominance barrier close to 50%. Clearly, this is a profound
limitation (from bath the biological and the practicability rationale of AAMSs) for any effedive memory (like the
biological memories). A memory with the ability of search localization can potentially overcome this limitation by
obtaining match only with local dominance within the field of attention. A locally dominant cue an be globally
small.

An instance of this class of memory has been recently demonstrated by [Khan95], and applied for content-based
image retrieval. Currently, we are experimenting two aher attentive learning models based on principal component
analysis [KhYu94,Sang89, and sdlf-organizing feature map [Koho89]. Diverse models of attentive memories are
potentially realizable (to suit spedfic applications) within the generalized representation and synaptic dficacy
function family demonstrated in this paper with appropriate transformation of many current learning models.

3 Hopfield in hisfamous 1982 @per wrote"..[patternsin] memories too close to each other are mnfused and tend to
merge... For N=100 [number of elementsin a pattern], a pair of random memories ould be separated by [at |east]
505 Hamming units'. Which actually indicates to the fact that for corred operation, the query pattern should have
at least 50% simil arity to the target pattern.
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