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Abstract
Technically, because of the limited dimensions

of the presentation media, and psychologically,
because of the limited human attention span, the
graphical program visualization in computer
assisted reverse engineering becomes increasingly
difficult with scale. This problem becomes com-
pounded when multi-perspective visualization is
added into consideration. In this research we present
a system called HVIEW, which attempts to over-
come the problem of scale by logical decomposi-
tion. HVIEW can present a graphical visual of a
computer program at various abstraction levels
from diverse perspectives as interactively requested
by the user. HVIEW logically formulates abstract
function and data objects to construct compressed
intermediate program representations and organizes
them into independent data and function hierarchies.
Whereas, these hierarchies provide the mechanism
of flexible abstraction, a user specifiable query filter
creates an assortmentof perspectives onthe rendered
visual of the modelled code.

1 Introduction
Conventional computer programs represent

information in a textual format. However, the
underlying process model of the software system,
which is based on the complex convolution of the
application specifications on the computing archi-
tecture, is fairly complex. Various graphical tech-
niques have been used informally to facilitate
program representation and analysis both in forward
and reverse engineering, such as flow graph, petri-
net based process models, inter-procedural call
graph [3] etc. Individually most of these visual
languages suffer from the inadequacy of their
expressiveness to encapture numerous facets of a
softwaresystem. Eachof these languages specializes
on specific aspects of a computer program. How-
ever,multi-perspective visualization plays a key role
in the human concept formation process. More

recently some researchers have proposed compre-
hensive schemes based on semantic networks as a
richer tool for program information representation
to support multi-perspective. For example MERA,
developed at SERL over last four years, has been
successfully used to represent a dozens of perspec-
tives [2,10] about a software process.

A common problem with most of these program
representation techniques, and specially the ones
which are based on semantic networks, are that their
apparent size and complexity grow intractably from
the human perception point of view with the size and
complexity of the software system. In the forward
engineering process, the target system is generally
a machine therefore, the scale, affects only quanti-
tatively. However, in reverse engineering, where the
purpose is to produce effective process perception
in human expert, the scenario is quite different. The
size and complexity of the visual information can
seriously effect the quality and response efficiency
of human understanding. Even a control graph with
various data dependencies, related to a slim sized
program (<500 line) presented on a full sized 2-D
workstation screen can be overwhelming for human
perception. Program visualization therefore, in
addition of multi perspective support, requires
decomposability of the representation formalism
and the reducibility of the information volume in the
visualization schema. In an attempt to achieve
reduced representation of program information
Basili et. al [1] proposed a formal validation based
approach to create concise specifications. On the
other hand, Howden [5] used a formal comment
based approach to generate logical specification of
various program structure. However, most of these
pioneering approaches attempts to compress pro-
gram information at an pre-engineered abstraction
level from a sterio-type perspective.

In this research, we propose a decomposable
graphical representation technique for program
representation. The system, called as HVIEW (Hi-
erarchical View), captures the code knowledge in a
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semantic network based hierarchical knowledge
structure and is capable of displaying the program
to the human expert at various abstraction levels. A
combination of semantic network and frame has
been used to store complex information necessary
for multi-perspective visualization. The network has
been designed is such a way that it can be modu-
larized through hierarchical decomposition. Instead
of emphasizing any single view, the system can
retrieve various facets of a code at pliable dimen-
sions through dynamic abstraction.

This paper presents a brief design overview of
HVIEW and the motivation behind it. Interested
readers should consult [6,7] for technical details. In
the following section we first explain our notion of
program information abstraction. Section 3 presents
the hierarchical organization scheme. Section 4 and
5 presents the internal semantic network based
representation and decomposition schemes.

2 Program Abstraction
Program abstraction is a process by which a

program is presented in a concise form which
facilitates program understanding by emphasizing
the significant information of the target program.

Information compression and information
selection form two basic means of abstraction.
Compression process uses all the components to
generate the synthetic concise output. On the other
hand, selection process ignores components which
are generally less desired to generate the concise
output. Both of the above abstraction processes are
generally irreversible.

Our definition of program abstraction differs
from Hartman’s [4] conservative abstraction and
Howden’s [5] formal abstraction in the sense that
we do not require abstraction process itself to be
reversible. Rather we expect, an ideal program
abstraction system to be capable of providing
information with flexible abstraction level so that
the user can retrieve full or part of the program with
desired detail. Thus, the question of reversibility
becomes irrelevant to our system.

3 Program Abstraction by Data and
Function Hierarchy

To achieve the controlled compression and
selection capability, we view a program as a
composition of two symmetric hierarchies involving
the two principal program entities; instruction and
data. First we will consider the case of monolithic
source code to explain the conceptual motivation
behind the HVIEW design. Later we will show its

natural extension to multi-moduler programs. A
single monolithic source code provides a base
model. The entities of the base model corresponds
to the function and data entities and their relation-
ships which are explicitly stated in the source code.

Hierarchy: HVIEW accepts the base model as
input and gradually constructs abstract or composite
data and function entities in a bottom up fashion and
organizes them into two hierarchies named as (i)
Hierarchical Data Model (HDM), and (ii) Hierar-
chical Function Model (HFM). Fig-1 shows the
result of this process for an arbitrary computer
program P which is made up of 5 statements and 4
data items. Let its statements are

, where, δi

refers to the data set associated with each of the

statements. Then . And let

. In this figure the left and the
right trees respectively denote configurations of the
HDM and HFM of P. The leave nodes of the
hierarchies denote the concrete (not abstract) entities
of P and other nodes are generated abstract or
composite entities.

The abstraction process can be viewed as the
systematic compression of the sets F(P) and D(P) at
each level by re-organizing or rediscovering implicit
spatial relations among the function and data enti-
ties. This reduction process generates the opportu-
nity of information compression at each abstraction
level of program representation. Besides the
systematic compressibility, further information
selectivity are enforced by filtering the entities or
concepts of immediate interest at the presentation
level to achieve complete abstraction. However,
both the compression and the selectivity are inter-
actively determined by the human expert. HVIEW
does not enforce any pre-engineered abstraction
level on its user.

Rule Books: The creation of new entities during
the process of hierarchy generation requires the
computation of their individual specifications as
well as the specifications of their relationships with
the existing entities in the network. These compu-
tations are guided by domain knowledge inscribed
in a set of 5 rule books, each of which specializes on
the following five aspects.

i. Function Hierarchy Generation Rules (FHGR).
ii. Data Hierarchy Generation Rules (DHGR).
iii. Function Attribute Frame Specifier (FAFS).
iv. Data Attribute Frame Specifier (DAFS).
v. Linkage Attribute Frame Specifier (LAFS).

F(P) = {f1(δ1), f2(δ2), f3(δ3)f4(δ4), f5(δ5)}

∪
i = 1

5

δi = D(P)

D(P) = {di | 1 ≤ i ≤ 5}
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The first two rulebooks contain rules to generate
the hierarchy. The other three rule books generate
the frame specification of the new entities generated
by the abstraction process. For example, as shown
in Fig-2 the new relations (as shown by question
marks) between the new data entities with existing
function entities is derived using the Linkage Frame
Specifier.

These rule books provide the isolation between
the domain knowledge and the abstraction engine.
The rule books may vary depending on the specific
programming language, application domain or even
due to the human engineers specific psychological
and technical preferences.

Fig-1

Flexible Abstraction: Now, the flexibility of
abstraction will be illustrated. Any complete cut
across the hierarchies forms a complete description
of the program. The average height of the cut
intuitively provides a measure of abstraction of that
particular representation. Consider Fig-2 which
repeats the same hierarchies of Fig-1, with two
intuitive abstraction scales placed beside the two
hierarchies, and two cuts across the hierarchies. In
this example cut A is more abstract than cut B. The
hierarchical representation of HVIEW makes it
possible to transcend between different abstraction
levels by gradually moving down and up the hier-
archies. For example, when, more functional
abstraction but detailed data dependency
information is desirable, the system selects func-
tional blocks from the upper level HFM and data
items from the lower levels of HDM as shown. A
symmetric inverse drift can generate a representa-
tion of P with more data abstraction and less function

Fig-2

abstraction. At each level, the abstraction grammar
provides the deduction ability of the inter-relations
among all the entities in that level. At the highest
level of the hierarchies, the abstraction is maximum.
Thus, the description of the two root entitiesand their
inter-relations, becomes the maximally abstract
description of the program P.

Non-Monolithic Program: Multi-module (non
monolithic) programs can be viewed as partially
abstracted program, where, each of the sub-routine
is a priori-abstracted module in HDM. Because of
the difficulty of handling the complexity and size of
monolithic program, the concept of modular pro-
gramming has evolved over time as a natural
extension towards abstraction. A programmer
defined subroutine is a reflection of the abstraction
process that has been performed in the mind of the
human programmer for the sake of program orga-
nization during forward engineering. HVIEW
design encaptures this pre-performed abstraction
without any artificial distinction. Thus, multi-
module programs only provides an advanced start-
ing point where some of abstraction already has been
done by the programmer. The generated base model
includes not only base functional blocks but also
some blocks in the upper level of abstraction.
Therefore, HVIEW treats a program segment, a
program or a collection of programs equivalently.

In a computer system a particular application
program is a part of larger system program. In the
abstraction process this means the derived hierar-
chicalmodels are parts of their larger system models.
On the other hand, the atomic statements and data
items of higher level languages themselves are
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abstract concepts relative to their machine code
decomposition. Thus, any application program,
subject to our understanding, is only a cross-section
(cut) of the overall abstraction hierarchies which are
both upward and downward expandable. The
abstraction machine of HVIEW is intrinsically level
independent in this hierarchy space. Depending on
users requirement and only limited by the avail-
ability of resources, it constructs and manages the
hierarchies and their interrelations.

4 Program Knowledge Representation
Now, we will describe the semantic net and frame

based (Generic) Hierarchical Program Model
(GHPM) formalism, that has been designed as a
knowledge structure for HVIEW with decomposi-
tion support. It also can support concurrent process
models. GHPM formalism has been defined using
the meta language MERA [2]. Inquisitive readers
may consult [8] for the theoretical aspects of GHPM
in representing complete program knowledge that
can ever be derived from a program code. Here we
will provide only a brief sketch of the formalism.

Fig-3

GHPMbuilds up a frame based semantic network
representationof the input program.The information
associated with the program concepts is defined and
stored as attribute: value pair in the defining frames
associated with the entity and relation objects. Fig-3
shows the definition of the formalism. Below we
describe, the component concepts that is supported
by the current definition of HVIEW.

The semantic network has two principal entities;
i.INSTRUCTION and ii. DATA_ITEM. There are
five sub-classes of INSTRUCTION type entities.
HVIEW uses The CF_DEP along with (petri-net
like) JOIN and FORK (null) instructions can rep-
resent and process parallel control flow. As shown
in Fig-3, an instance of INSTRUCTION can be
related with another instance of DATA_ITEM with
an instance of relation ID_RELATION. Similarly,
two instructions may be related by either or both
CF_DEP and IN_COMP relations. Both of these are
directed relations. Semantically CF_DEP refers to
the control dependency among the INSTRUC-
TIONs and IN_COMP refers to the composition
relation between a composite INSTRUCTION and
its component INSTRUCTIONS in a hierarchy.
Symmetrically, DATA items also have two analo-
gous relations DF_DEP and DI_COMP.

The HAS_ATTRIBUTE relations in the meta
graph show the components of the attribute Frames
for these entities and relations. These attribute slots
store the static properties of each of their corre-
sponding entities. The value set for most of these
attributes are generally part of the rulebook
vocabulary. During, the base model generation, the
atomic entities receives attribute values directly
from the corresponds atomic statements present in
the source code. The abstract entities generate their
slot values during the abstraction process using the
rulebooks.

5 HVIEW Architecture
The schematic architecture of HVIEW is shown

in fig-4. Logically HVIEW has four principal
assignments; (i) code parsing and generation of the
base model, (ii) generation of hierarchies in the
semantic net, (iii) controlled presentation of the
semantic net, and (iv) interactive modification of the
machine generated program model.

The data and instructions of the base model are
processed through two independent processors
(DATA and INST processors) for hierarchy gener-
ation. However, the activity of these processor units
are coordinated through the first two rule books.
Shortly, we will describe the processes. Once the
hierarchical model is generated, the HVIEW Output
Interface unit interactively controls the information
presentation session through which suitably selected
slice of the semantic network, and part of the
attribute frame is graphically presented to the human
expert. The hierarchical organization of the network
(controlled by HDM and HFM controllers) , as well
as the set of three filters jointly allow extremely
flexible visualization of the network complexity at
various abstraction levels. The interface controller
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is supported by meraTalk [2] which is a Xwindow
based graphical interfacing tool designed at SERL
to support MERA based languages.

The machine generated automatic organization
of the program knowledge in the hierarchical net-
work can be interactively modified by human expert
through the Interactive Hierarchy Modifier (IHM).
IHM unit consults with the HiGen to maintain
semantic network consistency.

Fig-4

5.1 Generation of Hierarchy

Instruction Hierarchy: The instruction hierarchy
is generated using a modified form of proper parsing
of the control flow view of the base model. Proper
parsing (a good description of the basic proper
persing can be found in [4]) decomposes a proper (
single entry, single exit) graph into sub-proper
graphs. However, the basic proper persing is unable
to decompose sequences. We have introduced sub-
sequencing into proper parsing based on data cou-
pling and concurrency analysis. This advanced
parsing can handle system concurrency, parallel
execution paths and can breakdown a long sequence
of control flow into logically decomposed sub-
sequences. In accordance with this modified tech-
nique, the following new set of prime propers has
been used as HVIEW decomposition basis set in the
Rule Book-1 (FHGR). The set has been found to be
well tuned with the occurrence frequency in typical
programs.

{SQ_N, TB_N, LP_3, LT_2, TL_2, ATYPE}

Fig-5

Thestructures of the first fiveof this set are shown
in Fig-5. ATYPE refers to a class of primes which
do not belong to the structured basis set. The
decomposition process builds up the hierarchy of
HFM, where the control flow view of the semantic
network is recursively decomposed into sub-propers
until all of them becomes prime.

Fig-6(a)

Fig-6(b)
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000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DBMS.
001100 DATA DIVISION.
001200 FILE SECTION.
001300 FD T-FILE.
001600 01 T-REC.
001700 03 T-REC-A PIC 9(1).
001800 03 T-REC-B PIC 9(4).
001900 03 T-REC-C PIC 9(4).
002000 FD M-FILE.
002300 01 MW-REC PIC X(20).

002400 WORKING-STORAGE SECTION.
002500 01 M-REC.
002600 03 M-REC-1 PIC X(5).
002700 03 M-REC-2 PIC X(4).
002800 03 FILLER PIC X(11).
002900 01 WK.
003000 03 WK1.
003100 05 WK1-A PIC X(1).
003200 05 WK1-B PIC X(4).
003300 03 WK2 PIC 9(4).
003400 77 FLG1 PIC X.
003500 77 FLG2 PIC X.

003600 PROCEDURE DIVISION.
003700 MAIN-SEC SECTION.
003800 PERFORM INIT-SEC.
003900 PERFORM EDIT-SEC UNTIL FLG1=’1’.
004100 STOP RUN.

004200 INIT-SEC SECTION.
004300 MOVE ’0’ TO FLG1.
004500 OPEN INPUT T-FILE.
004600 OPEN OUTPUT M-FILE.
004700 READ T-FILE
004800 AT END MOVE ’1’ TO FLG1
004900 CLOSE T-FILE M-FILE.
005000 EXIT.

005100 EDIT-SEC SECTION.
005200 MOVE T-REC-A TO WK1-A.
005300 MOVE T-REC-B TO WK1-B.
005400 MOVE T-REC-C TO WK2.
005500 IF WK1-A = ’3’
005600 THEN MOVE ’1’ TO FLG2.
005700 MOVE WK1 TO M-REC-1.
005800 IF WK2 > 100 ADD 100 TO WK2
005900 ELSE IF WK2 < 50 ADD 200 TO WK2
006000 ELSE ADD 150 TO WK2
006100 MOVE WK2 TO M-REC-2.
006200 WRITE MW-REC FROM M-REC.
006300 READ T-FILE
006400 AT END MOVE ’1’ TO FLG1
006500 CLOSE T-FILE M-FILE.
006600 EXIT.

Fig-6(c)

Data Hierarchy: HVIEW places special emphasis
in modelling and organizing the data space of a
program. At the top level data hierarchy or HDM is
generated using static decomposition based on the
scope of data items. In the lower levels it performs
rule based analysis to dynamically discover logical
groups of data items with respect to their coupling
and associated function decomposition. However,
the static hierarchy explicitly stated thorough the
data declaration segment always overrides the
dynamic analysis. The well defined data declaration
of COBOL generally produces satisfactory result.

Fig-6(a) and Fig-6(b) presents a HDM and HFM of
the example source code of Fig-6(c) generated by
HVIEW.

5.2 Logical Specification

Both, the HDM and HFM generate new abstract
entities. The specification of these entities are gen-
erated usingother three rulebooks. Thespecification
frames of the new abstract entities are generated
from the composition type and pre-defined tree-
tables, which specifies the generic connection
between the reserve words of the code language.

The most critical is the abstract description of the
link relation between the function and data items.
The conventional relations, such as, Read/Write or
Use/def etc. are insufficient to describe the abstract
relations that evolves between abstract (composite)
data items and abstract (composite) instructions.
For, example, if a conditional composite block (like
TB_2 in Fig-5) is reading a data item in one branch
but writing it in the other branch, then neither "read"
nor "write" can be specified as the relation between
the composite block and the data item, without
apriory knowledge about the result of the test con-
dition. An extended and novel relation set has been
developed for HVIEW to resolve the limitation of
the classical dependency set in specifying abstract
relations. This combines four primitive relations
namely i. Read, ii. Write, iii. Read then Write, and
iv. No Operation, using OR operators. These gen-
erate a complete set of 15 possible relation types.
This novel set allows all the usual dependency
analysis frequently performed in software engi-
neering at higher abstraction level in an "optimistic"
manner. Description of this extended set can be
found in [7].

5.3 Visual Controls
The abstraction level and the perspective of the

visuals is guided by the HDM and HFM controllers
working in tandem with the filters. In a typical
session of HVIEW, the pop-up EDIT window sup-
ports the graph expansion and collapse options
which allows the easy traversal between the program
( or program slice) representations with various
abstraction levels. A Dialog Shell allows interactive
attribute frame filtering. In general the attribute
frame filters in conjunction with the hierarchies,
provide flexible abstraction.

Filters on relation, instruction and data item
provide multi-perspective viewing modes to the
modelled code. For example, by selecting only one
data item, and a "ID_relation" path, a typical
program slice [9] can be viewed. The depth of the
slice can be controlled by specifying k-closure on
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the "ID_relation". A selection of only the
INSTRUCTION and CF_DEP entities of GHMP
generates a flow graph visual. Similarly, a selection
on INSTRUCTION and IN_COMP can provide a
visual super set equivalent to inter-procedural call
graph. In fact a much more variety of perspectives
on the visuals can obtained using the sophisticates
path specification language which can support filter
specification operators including closure and
negation. The scope of the specification can be set
on both entity type as well as on attributes. This
provides a powerful tool for various sophisticated
query options to fit user’s perspective requirement.

6 Conclusion
The intended purpose of HVIEW is to assist

human expert in the reverse engineering of fairly
large but trivially complex computer codes. The
critical algorithms of HVIEW have linear time
complexity. The hierarchical organization of the
internal semantic network based model allows
HVIEW to produce program visuals at various
abstraction levels to human experts according to user
specification. In the conclusion we would like to
summarize the following aspects of this work:

❏ HVIEW provides a decomposable representation
of computer programs based on function and data
hierarchy.

❏ Programs can be visualized at various depth and
details due to the flexible abstraction capability
of the hierarchical organization.

❏ Usual dependency analysis can be carried out at
higher abstraction levels of HVIEW without
backtracking to lower levels.

❏ HVIEW supports a wide range of program views
or perspectives on the above abstraction levels.
The internal semantic network contains all the
relational concepts related to a program. The
filters at the output interface provides the
mechanism to generate clean visuals from the
specified perspective.

❏ HVIEW can be used for a broad class of
computer languages, such as multi-program
COBOL,JCL, machine code. It can also naturally
process parallel languages.

HVIEW is expected to be integrated with the
Software Maintainers Assistant (SMA) system
developed at SERL in recent years. At the end, the
authors would like to thank members of SERL and

specially Takeshi Nishimura, Bo Ma, Xiaobo Wang,
Hai Huang, Koji Takeda and Taro Adachi of SERL
for their support at various capacity in this work.
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