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Abstract
Recent approaches for understanding and archiving of

image information are mostly model based. These
approaches attempt to search for pre-defined concepts in
image and to quantify the content information into a struc-
tured model. However, such approaches have demonstrated
limited success in handling natural images, or drawings with
multitude of interpretations. The lack of any easily distin-
guishable structure in the pixel representation of these
images allows a large number of alternative, yet subjective,
interpretations. It is nearly impossible for any modeler to
use a finite language to express all such subjective inter-
pretations. In this paper, we present an alternative
content-based search mechanism. This approach does not
require the stored images to be subjectively modeled into
intermediate representations, but rather lets a pre-
processing phase to automatically abstract the images into
an organized state where distinguishability by any subset of
pixels are maximized. Such an abstraction process allows
an interrogator to use any collection of pixels as a sample
search pattern. The interrogator’s query originates from his
expectation and mental interpretation. The interrogator uses
an example image to expressed his interpretation to the
search mechanism. This associative computing technique
emulates a direct but fast search into the archive.

1. Introduction

1.1 Structured and Unstructured Information
One of the principal reason that images are difficult to

manage is probably that the very reality of the world
(manifested in an image) lacks any rigid structure in terms
of well-defined concepts. Any image is merely a narrow
projectionof the realworld. Any impositionof a "man-made"
structure tends to confine the interpretation or understanding
of the world through images.

Current database technology is strictly tabular, and only
recently it is shifting towards object oriented approaches,
which allows at least some flexibility of representation.
However, when it comes to the management of image
information, even object oriented approaches fall far short
of the flexibility required to cope with the formlessness of
image information. After two decades of research and
development, some modest progress in structure oriented
approaches for image management has been made [Chan92,
ChKu81, ChFu81]. However, some innovative technique to
deal with the formlessness of images and the amorphousness

of pixels is much needed [Chan92, Jain93, GrMe89]. In this
researchwe will show howa new paradigm of neural network
technology can come to the aid of image information
management to cope with such structurelessness.

Not that all images are structureless. S. K. Chang
[Chan87] has classified pictorial databases into four classes
by considering the types (logical/visual) of objects handled
and the "visibility" (textual/visual) of the query language.
However, information that can be considered "visual" can
further be subdivided into two major classes: graphic images
(such as an engineering drawing, iconic map, or hand
writing) and natural images (such as sceneries, paintings, or
Landsat images). The process involved with managing and
understanding formless natural images are substantially
different from (and more difficult than) that involved with
crisp graphics.

Although both classes are sensed visually by human,
processing them into useful information for image man-
agement may require different approaches. Pure graphics is
more symbolic, refined and pre-abstracted [Kato92]. On the
other hand natural images are unrefined and amorphous. As
a consequence, concept recognition in images is much more
difficult and requires sophisticated feature detection and
assimilation.

Concepts and objects become less well-defined and less
compact as we move from graphics to natural images. From
the structural point of view, graphics information can,
perhaps, be managed by the traditional database approaches.
On the other hand, natural image information can not be
handled within the structural framework of traditional
database technology.

1.2 Image Information
Information about any image can be of three physical

types: (a) contextual tags, (b) pixel content (raw image), and
(c) derived and condensed symbolic model, as shown in
Fig-1.

Context refers to the tag information that comes along
with an image, (such as name, location, time, etc.). Con-
textual information is highly quantized and symbolic. Con-
ventional database technology is mature and well suited to
manage such well structured contextual information. Most
of today’s image management systems in commercial use
operate primarily with databases in this symbolic and con-
textual form ( example systems are PACs used in hospitals,



Fig-1 Physical Image Information

Multimedia systems, Macro Mind Director, AuthorWare,
etc.). However, such contextual tags can not provide any
information about the image contents.

The focus of todays image information management
research is to provide access to the content of the image. The
current main-stream effort for content-based search has been
directed towards cataloging the logical meaning from the
image. The process of ’meaning’ extraction is more accu-
rately a process of derivation where the meaning is derived
from our subjective knowledge. The extraction of ’meaning’
from raw image is a formidable task. Regardless of how the
condensed logical description of content is extracted, sym-
bolic representations in various object oriented data struc-
tures are used for information storage. Derivatives of current
object oriented database management techniques have been
used for searching and reasoning in this symbolic and
structured intermediate description of images. Example
systems include QBIC [Niba93], IIDS [ChYD88], PICDMS
[JoCa88], IDB [TrPr91].

As mentioned earlier, moderate success for graphic
images can be achieved through such structured approach.
However, as we begin to deal more and more with non-
symbolic natural images, the derivation of object model
becomes increasingly difficult. For these cases, techniques
that allow direct content based search become more impor-
tant.

Only a few of the relatively earlier attempts have dealt
directly with the content of the raw image (IMAID-ARES
and GRAIN) [ChFu80, ChFu81]. However, due to the lack
of efficient (software or hardware) search mechanisms,
mainstream attention shifted back to approaches based on
condensed representation. In this paper we will demonstrate
how an effective, direct content search technique can be
developed through a new generation of neural computing
technology

2. Previous Approaches
Fig-2 provides a generalized schematic of the existing

approaches for the image information storage and query. All
approaches have two distinct stages; encoding and decoding.

In encoding stage, each of the physical images is inter-
preted into an intermediate representation.The interpretation
involves encoder’s (also referred as interpreter) knowledge
and the physical image itself. The objective of this stage is
to develop a condensed, efficient and crisp description of the
image content from which, all the queries of the future
interrogators can be answered accurately and quickly. The
interpretations from a collection of images are then stored in
an archive.

In decoding stage, the mental expectation of the inter-
rogator (also referred as user) is transformed into a template
through interrogator’s knowledge. Interrogator also
generally blends a constraint language with representation
of expectation to generate one or more templates. The search
is performed by matching interrogator’s template with the
stored models. Generally there are multiple interrogators.

The principal research issues are (a) how completely
information can be represented, reasoned and queried, and
(b)how the human involvement can be reduced or eliminated
from interpretation and reasoning stages. The first issue is
related to the design, and the second issue is related to the
extraction of model.

Fig-2 Model Based Approach

Current approaches can be classified into three types
according to their emphasis on various aspects of the overall
problem. We will name them as; (a) meaning oriented, (b)
automationoriented,and (c) user profilingbased approaches.
Meaning oriented approach concentrates on the issue of
representational completeness and depth. If necessary it
assumes substantial and sophisticated human involvement.
In contrary, automation oriented approach emphasizes the
automationby substituting humans withcomputer programs.
The third, and relatively recent approach, tries to use user’s
evaluationfeedback to obtain a connectionbetween hisquery
and expectation. Below we briefly investigate each of these
approaches more closely.
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2.1 Meaning Oriented Approach
Any model generation requires knowledge at two levels.

In the meta-level, interpreter must have a model about the
extent and boundary of concepts that it is supposed to extract
and store to satisfy possible queries. In the extraction level,
It must know how to extract these concepts from the bit
representation of image.

The encoding process involving human generally
requires; (a) detection/annotation of concepts, (b) classifi-
cation and organization of concepts, (c) construction of a
knowledge structure to encode a scene knowledge, and (d)
the archiving of collection of knowledge structures. Various
approaches of this class can be divided into two main types;
keyword/free-text based and semantic model based.

Keyword/free-text: Key word based approaches stores
a set of key words with quantum descriptions of the scene
[HiLe92]. For example to describe a football game scene, it
may store words ball, leg, player, kicking, green, grassy,
football field, game, etc. as key words. A slight variant is the
free-text based approach which stores sentences. However,
in both bases, search is based on plain key words. The
positive sides are; (a) the system is easier to use for someone
who is familiar with the range and type of keywords used by
the encoder, (b) free-formatted text offers greater flexibility.
There is no bound of concepts (and their level of abstraction)
that can be stored and retrieved as long as both the encoder
and query use the same keyword for them. The minus sides
are; (a) needs agreement between the vocabulary of the
encoder and user. Some system proposes judicious cross-
indexing to alleviate the problem up to some extent. (b)
relations connecting two specific concepts can not be
handled.

Semantic Network: The semantic model based
approaches attempts to capture and query not only the
individual concepts, but also the relations that connect the
concepts. As a first step it divided concepts into three classes,
(a) objects, (b) entities and (b) attributes. It stores these
entities in various forms of conceptual graphs (known as
EAR models). Systems specialize on the nature of infor-
mation it stores.

Such as, some systems encode the physical composition
of the scene objects. It describes a scene in terms of
component objects. Component objects are in turn described
with their finer components. For example, a human figure
can be decomposed into head, body, feet, hands, etc. Head
can be further decomposed into eye, nose, etc. Generally tree
graphs are used as data structure where each arc represents
"part-of" or "composed-of" kind of relations between the
objects it connects to represent such hierarchical composi-
tional relations [HoHs92].

Some model stores abstraction levels of feature concepts
in a hierarchy. For example, Jun Yamane and Masao
Sakuchi’s system [YaSa93] hierarchy represents the key-
words at different levels of abstraction. They connect
"football" with its alternate abstract descriptions, such as
"white-obj", "white-mass", etc. through a hierarchy. The

objective is to connectmachinedetectable features withmore
subjective objects. Here the arcs represent "an-instance-of"
kind of relations. A number of other researchers have tried
to create abstraction hierarchies of features [BeZi92,
IrOX92].

The need to improve geographical information systems
, such as satellite imagery, map data, etc. has sparked
considerable research in encoding spatial relations among
the objects in a scene [Chan87,LeHS90]. Quad tree, B-tree,
R-tree, 2D-string are some of the popular representation
structures proposed for encoding spatial relations. In these
approaches, the space is generally divided into a 2D grid.

In Quad tree representation the 2D image space is
recursively decomposed from the top into quadrants, Thus,
each node of the tree is made up of four children. Each of
these four links bears specific meaning (such as "on-the-
first-quadrant-of") expressing the child’s position relative to
the parent. S. K. Chang [Chan87] on the other hand, has
proposed a quite different approach where he represents the
grids and their symbolic contents with two symbolic strings.
The first string is obtained by scanning the grids horizontally
from top to bottom. Objects in each line in equated and lines
are ordered. A similar string is constructed by scanning the
grids vertically from left to right.

Another group of researcher concentrated on the repre-
sentation of events. The target of these systems is generally
to cover broad range of knowledge and subsequent query
[HiLe92]. Museum databases of history and arts are just one
example of such databases. An interesting example is the
Birbeck system developed by Hibler et. al [HiLe92] devel-
oped at UK. From a given text sentence, it recognizes noun,
adjective and verb respectively as the entity, attribute and
relation in their EAR model. A human is need to interpret a
scene through English like sentences. He puts capital first
letter for all nouns (Horse, Book) and puts all verbs in present
continuous tense (running, playing, etc.) so that parser can
easily recognize concept types and construct the semantic
net.

The EMIR meta-model by Gilles Halin and N Mou-
baddin from France [HaMo92] isexample of a more complex
and broader knowledge representation formalism.

2.2 Automation Oriented Approach
A considerable research effort has been focused for

automatic extraction of condensed representation. To
economize the extraction, almost all attempts decompose the
overall concept space into fewer basis ones and emphasize
the automatic detection of these basis concepts (also referred
as features). In contrast to knowledge based approaches, it
uses mathematically (or algorithmically) quantifiable fea-
tures. Once, these basis features are detected by searching
images through filters, detected features are assimilated with
the help of pre-encoded composite object models to detect
higher level objects which have some kind of semantic
meaning to humans.



Various methods can be distinguished on the type of
feature they use. These features can be classified into two
main types (a) global features, and (b) local features. Global
feature basedapproaches utilize properties which are derived
from the entire object. Geometrical features are very popular
for representing shapes. Area, perimeter, a set of rectangular
or triangular cover, moments [Jaga91, Hou92], etc., are few
of the geometric global features those have been used to
encodeshape. On the other hand, local featuresare composed
of only some important segments of object, such as line,
object contour, points of maximum curvature change,
[GrJi92], dots on minimal rectangle [YaSa94, etc.

Local features can withstand partial loss of object com-
ponents, generally search is fast, but are susceptible to major
errors in special situations. Some researchers have used
statistical features such as patch histogram [Swai93]. As a
typical example Hou et. al. at Siemens [Hou92] proposed
first order polar moments to describe shift and rotation
invariant compositional representation of objects.

Instead of using such ’meaningful’ mathematical fea-
tures, some research has been directed towards constructing
rather covert but ’efficient’ features like Forrier coefficients,
fractal coefficients, or principal components. The objective
is optimize some performance objective. Such as maximize
distinguishability among the images, or minimize the
representationspace throughorthogonalization of the feature
space, etc. Generally these features are adaptive to the
particular set of images under consideration.

Features are assimilated to detect complex objects and
concepts. Computers require an object model knowledge to
find out what combination of which features will make an
object. If humans are to encode these object models, then it
becomes easier if the basic features have some conceptual
’meaning’ (even when they are mathematical).

Neural networks have been used by many researchers in
automatic feature detection. Neural networks have the
advantage of being able to recognize features [CJHD93], as
well as object model knowledge from example. Since,
modeling image features it self is a tedious task, therefore,
the trainability of neural network greatly reduces the task on
both feature and object modeling. Generally, rote learning
networks have been used in this approach.

On the other hand, autonomous learning networks have
been used to construct efficient features, such as approxi-
mation of principal component analysis [RiSt93]. However,
these neural network based approaches are distinct from our
approach. Because, these also actually attempt to formulate
an intermediate model representation of the actual image
content.

2.3 User Profile Based Approach
Oommen and Fothergill from Canada [OoFo93]

describes a method for image examination and retrieval,
which basically eliminates the process of image annotation
by human or machine encoder, but indirectly shifts the task
of modeling to the users. The technique is to adaptively

group/classify images to the objects in query based on user’s
subjective evaluation of success and failure of the responses.
The approach is explained in Fig-3. Initially images are
randomly assigned to a fixed number of groups. During the
first query, one image from each group (generally the one at
the center of cluster) is presented to the user. The user then
provides a reward/penalty response for each of these pic-
tures. The clustering algorithm, then moves the correct
responses to the state of maximum certainty (generally in the
same cluster) and moves the incorrect responses to a state of
minimum certainty (generally to a different cluster). Grad-
ually the system, establishes connection between user’s
query and expectation. This is one of the first approach that
performs matching on the basis of subjective evaluation.

Fig-3 Subjective Modeling Approach

3. The Problem of Synchronization
The approaches based on intermediate representation of

image information suffers from a fundamental difficulty of
synchronization between the encoder’s and the inquirer’s
knowledge. The difficulty of synchronization exists at both
levels of knowledge.

Meta-Model Level: In this first level, the encoder has to
correctly guess the expectations of the users and construct a
fairly general framework (meta-model) from which he can
satisfy users’ expectations. The difficulty is that there may
not be any such framework of finite dimension to describe
visual information. Consequently, any pre-modelling runs
the risk of loosing some information because of the asyn-
cronous emphesis of particular framework. The lost infor-
mation may be relevant just from a different subjective
perspective. For example, in an effort to describe a historical
scene the encoder may meticulously try to describe all the
events portrayed. But, a future query may be on the spatial
location of a character. In additional, many visual informa-
tion can not be represented using symbols, keywords, or even
numerals. For example, there is no convenient language to
describe shape, or texture.

Model Extraction Level: Even if we assume that such a
framework of representation exists, in the second level, we
run into the problem of subjective evaluation of the encoder
during model extraction. Same situation can be interpreted
by multiple keywords. The multiple interpretability is not
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only associated with the objects but also with relations that
connects them. A scene can be analyzed from numerous
equally valid subjective viewpoints, resulting in numerous
equally valid structured models, even within the bounds of
a finite well-defined language. In general, judging the visual
contents of an image itself is an imprecise task.

In meaning oriented approach, when human annotates a
scene, the problem is the synchronization between the user’s
subjective knowledge and that of the inquirers. On the other
hand, in automation oriented approach, it becomes the
problem of synchronization between the user’s subjective
knowledge and the encoders mathematical model of the
world (or more precisely the subjective model of the pro-
grammer who developed the encoder).

Mathematical features: The mathematical description of
basis features has the advantage, that they can be precisely
quantified. However, these are very restrictive in their
capability to model complex objects. It is very difficult to
quantify complex concepts like "hill", "grassy field", etc.,
from a finite set of pre-defined mathematical basis features.
The geometry of same object (even a strictly mathematical
tetrahedronobject) can bewildlydifferentwhen viewed from
different angles. On the other hand, the mathematical
description of one object can easily match the mathematical
description of the other. For example the circular geometry
of moon is very close the circular geometry of coin.

User profiling: The approach is in fact a reaction to the
synchronization problem that is deeply associated with the
first two approaches. It attempts to make the interrogator also
perform the functions of the encoder (computationally it may
be equally tedious like the meaning-oriented approach).

It never physically accesses the raw image information.
Therefore, the model of information content that the inter-
rogator helped to construct is entirely subjective. This
intermediate model representation is the subjective opinion
of a collection of previous users. If there is consistency
among the subjective knowledge of past users, then this
approach can overcome the synchronization problem. On
the other hand, if the previous users are using different
vocabularies andsubjective interpretations, then thisaproach
also suffers from missyncronization.

4. Our Approach
In this research we present a complementary approach

that is conceptually equivalent to the model based search
technique, but removes any intermediate interpretation/re-
presentation of the scene. Rather, the user himself translates
his/her subjective expectation directly into pixel
representation and performs search into the archive. Thus it
eliminates the ubiquitous problem of synchronization
between the subjective interpretation of the user and that of
the encoder. Fig-4 shows the schematics of the approach.
The approach allows direct visual search into the pixel
database for features that can be represented by a finite
amount of pixel subset.

Traditionally it is believed that such a direct search is
computationally very expensive. We show how a space and
time efficient organization of the raw image pixels through
a new neural like technology can emulate (rather actually
doing it) such a direct search, without being computationally
expensive like the actual search.

Technically, it does convert the image information into
an intermediate representation. But the objective of this
transformation is to maximize mathematical distinguish-
ability over any subset of the images and to order the
multi-dimensional images to increase the search speed.

Fig-5 Content Search Approach

The user expresses his expectation through an example
image. This approach entitles the user to have his/her own
structured interpretation (which may be subjective) of the
image. User uses this subjective interpretation to efficiently
communicate his/her expectation about the relation between
the objects and concepts he/she perceives to exist in the
example image to the search mechanism.

In traditional approach, a structure is imposed and
subsequently hard encoded in the intermediate representa-
tion. In contrast, in our approach such structure is used only
at the query interface of the decoding stage. Thus, the
difference of subjective interpretation between various users
(or the very subjectivity of such structures) does not create
any problem in our approach.
Technically, this approach is based on a new representation
of basic information and a computing mechanism that
handles this new representation. In many ways, this new
computing paradigm resembles the neural computing,
however, with some fundamental distinctions. The theoret-
ical aspects of this new computing paradigm is explained in
[KhYu94,Suth90].

4.1 Information Representation
At the heat of this new technique lies a novel notion of

information. A stimulus pattern is a suit of elements
. Such as, an image pattern can be considered

as a sequence of pixels. Unlike conventional notion, which
express and processed each of these pieces as a scalar valued
real number, we include the meta-knowledge about each of
its pieces as part of the basic notion of information. Thus,
each element of information is modelled as a bi-modal pair.
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Where, ’s make a set of basic information elements and
represents the meta-knowledge associated with this set.

Multidimensional complex numbers are used as operational
representation to map the bi-modal information. Each is
mapped onto a phase element in the range of
through a suitable transformation, and becomes its mag-
nitude.

Where,each is a d-dimensional vector.

Each of the is the spherical projection (or phase compo-
nent) of the vector along the dimension . Thus, a stimulus
and a response are represented as:

4.2 Encoding

In the encoding process, we use methods analogous to
artificial associative memories [CaGM92,CaBu90,Ga-
bo69,Hint85]. The association between each individual
stimulus and its corresponding response is defined in the
form of a correlation matrix by the inner product of the
conjugate transpose of the stimulus and the response vectors.
If the stimulus is a pattern with n elements and the response
is a pattern with m elements, then is a matrix with
d-dimensional complex elements.

The associations derived from a set of stimuli and a set
of corresponding responses are superimposed on a super
matrix X of same dimension referred as Holograph.

4.3 Retrieval

During recall, an excitory stimulus pattern is
obtained from the query pattern:

The decoding operation is performed by computing the
inner product of the excitory stimulus and the correlation
matrix X:

4.4 Focus Capability
By combining, the encoding and decoding operations

expressed in (1) and (2), the retrieved association can be
decomposed into principal and cross-talk components.

Where, is considered the candidate match. From (4) it
can be deduced that if, the excitory stimulus , bears
similarity to any priory encoded stimulus , in their -suit
then the principal component of generated response
resembles its corresponding response pattern .

The cross talk component behaves as a summation of
randomly oriented vectors. Up to an acceptable number of
associations (P), and for reasonably symmetrical distribution
of the multi-dimentional vector elements, this remains well
below unity, and thus, the net response closely follows the
principal-component [KhYu94].

The jth component of the retrieved response (the retrieval
of its other components are also identical and independent)
is shown by equation (5). For the sake of notational
simplicity we have also assumed d=2.

Equation(5) shows that each of the elements in the query
stimulus ( ) tries to cancel the phase component of the
corresponding encoded stimulus element ( ) by forcing

. Thus, each tries to reconstruct the associated
on its own. The accuracy of each reconstruction depends on
the closeness of these two elements.

It is possible to visualize that the resultant response is a
weighted average of the reconstructions done by all these
individual query stimulus elements, where the weight terms
are . This, mathematical construction of our model plays
the key role in selective focus. By appropriately choosing
the values, it is possible to dynamically set the importance
of each query stimulus component without effecting the
independent reconstruction efforts by the others. By setting

it is possible to completely shut off the kth stimulus
element. If we have meta-knowledge that the kth element is
incorrect, then we can effectively block it from contributing
errors in the weighted sum.
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Here it would be appropriate to clarify the critical
distinction of this computational model from conventional
neural network models. Almost all of the conventional
artificial neural networks use the classical scalar product
rule of synoptic efficacy, where the reconstruction is per-
formed as a linear weighted sum. Weights becomes fixed
after learning. Therefore, each piece of stimulus element
becomes essential in the overall reconstruction. Whether it
will converge correctly or not depends on the statistical
balance between the correct versus incorrect components
among all the pixels in the pattern.

In contrast, the proposedvector product ruleof synoptic
efficacy is a form of weighted average. Each term is not
essential to the overall reconstruction. This critical distinc-
tion allows our model to dynamically adjust the subset of
pixels those should contribute in the matching. [KhYu94]
shows more detail mathematics behind the focus charac-
teristics.

This new characteristics makes it possible to use any part
of the content of the pattern as cue and still recover the
associated response correctly. In contrast, any conventional
networks (so far it is based on scalar product rule) requires
statistically at least 50% in the elements to be present
correctly.

In database scenario, the objects of cognitive focus are
generally derived from the subjective model conceived by
the user. Quite often such objects are statistically weak. Not
only that, such focus varies from query to query on various
pixel subsets. The focus capability of this new associative
computing paradigm allows the retrieval mechanism to
establish an associative search only on the basis of any user
selecteble subset of pixel elements. The particular sub-set of
pixels, which a user will use can be determined completely
by the user depending on his own subjective interpretation
of the scene.

As expected, this new computational paradigm has
similar computational advantages like conventional neural
networks. In fact, as shown in equation (3), a search into
thousands of stored images through this technique requires
a single complex matrix multiplication. A conceptually
comparable pixel wise search by conventional methods will
require massive amount of computations in the process of
performing linear search into each of the images. In addition,
the computations are highly parallel and distributed.

5. System Design
Now we will present a direct content based image

database search mechanism to perform query-by-example
using thisnew technique. Fig-5 shows the schematic diagram
of the system. The system can be decomposed into three
major sub-systems, namely (a) image archive (IA), (b)
holographic encoding and (c) dynamic indexed query.

In archive, images are compressed before storage. The
query mechanism is independent of this storage sub-system.
The later two subsystems will be explained in details.

 

Fig-6 System Architecture

5.1 Encoding Subsystem
No human involvement is required in the encoding

subsystem. Each of the stored images is first associated with
one unique response label pattern (RLP). RLPs are internal
system indices for the archive sub-system.

The first stage of image encoding is auto-adaptive
segmenter unit (ASU), which segments the images into an
analog set of subimages. Eachpixel has a net belonging value
of 1. Pixels are allowed to be the member of more than one
set, provided the conservation of net belongingness. The
belongingness values generated a membership mask (MM)
foreach of the subimages. Each of the segmented sub-images
can be considered as external indices to the image. The
objective of auto-adaptive segmenter is to guess the seg-
mentation patterns that may be generated during dynamic
query as closely as possible, however, without any human
intervention. A multi-median threshold based algorithm is
used to perform this segmentation. Each of these subimages
is then transformed into a sub-image stimulus pattern(SSP).
The phases of complex stimulus elements are generated from
the pixel color values, and the magnitude values are gener-
ated from the membership mask MM. Each SSP is then
associated with the assigned RLP of corresponding image.

For each association, the encoder unit uses a differential
encoding algorithm. In this approach before encoding a new
association, it is first applied to the system, and only the
difference between the current response and expected
response is encoded by equation (1). Holographic abstract
stores all the associations.
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5.2 Decoding Subsystem

In this sub-system, the example image is supplied by the
human user. With dynamic indexing tool-set, the searcher
creates a view-point description (VPD) in the example
image. The view point description language has three types
of specifiers; (a) element selection masks (ESM), (b) com-
posite object connectives (OCC), and (c) spatial relation
connectives (SRC).

The user is allowed to construct his own subjective
interpretation (model) of a scene. Fig-6(b) shows a typical
structure perceived by a subject when he was shown XQ1
(Fig-6(a)). This particular interpretation happens to
emphasize only the compositional aspect of the scene. A
different user may have a different interpretation of the same
scene.

object red green blue x y density

Nbody 180,30 150,30 20,0 141,112 92,48 0.056

Nhead 80,0 90,0 60,1 137,112 110,97 0.015

Nrarm 60,0 100,20 80,0 111,94 93,63 0.013

Nlarm 60,0 100,20 80,0 159,141 97,66 0.019

Neyes 200,50 90,0 90,0 135,116 117,110 0.005

Nrleg1 60,0 100,20 80,0 122,104 60,38 0.012

Nlleg1 70,0 100,20 80,0 150,134 64,46 0.012

Nrleg2 60,0 100,20 100,0 117,104 37,27 0.004

Nlleg2 60,0 100,20 100,0 159,139 41,14 0.010

Nrknee 180,30 50,0 100,10 112,102 41,34 0.002

Nlknee 180,30 50,0 100,10 153,141 47,39 0.003

Cboy 255,80 180,80 120,20 144,122 41,24 0.008

Ccar 210,50 30,0 100,10 148,98 28,3 0.041

Sbody 255,0 255,0 10,0 105,0 55,0 0.164

Grass 200,0 220,100 170,40 159,0 22,0 0.039

Table-1 Subjective Objects of scene XQ1

Table-1 shows the ESM descriptions of primitive objects
used this model. Each of the ESM specifies a window in
space (x,y for 2D) and a window in color (r,g,b). The pixel
locations satisfying these filter ranges contribute to the focus
defining elementary objects. The regions of focus on ele-
mentary objects can be logically combined to obtain focus
fields for composite objects. The focus mask of composite
object is created by OCC, which is actually fuzzy set
operators (fuzzy union, intersection and negation). The
concept "NINJA" is an example of a composite object
envisioned by the subject. It has been created by logical
combination of basis objects from Table-1.

The user can also specify a region of search (ROS) for
objects corresponding to a spatial space where the objects
are expected. The spatial expectations expressed through
SRC can be relative or absolute. (SRC also requires a search
resolution number, which determines the accuracy of spatial
search). The user can also express multiple alternate

expectations with OR connectives of OCC. Fig-6(c)
describes a typical query. It shows three alternate focus
fields. Pan-C also has a ROC (shown by the filled rectangle).

Once, the expectation is specified by the user, an opti-
mizer translates the specifications into one or more view
point templates (VPTs). Each template is then associatively
decoded for closest match. The results are then again
logically assimilated to produce an answer corresponding to
the desired search.
Given the view-point template (VPT), the subsystem gen-

erates the query stimulus. The decoder unit uses this stimulus
to search into its collection of holographic abstracts and
generates a response label (RLP). The computation follows
(3). The computation time is of * and thus independent of
the number of stored patterns.

Each raw RLP is passed through a noise suppressor unit
(NSU) to generate a RLP from the stored RLP set. The noise
suppressor measures the distance of the generated response
from the stored RLPs. Each RLP element is a complex
number. The stored sRLPs are generally assigned a magni-
tude of 1. On the other hand, the generated RLP magnitude
provides a measure of confidence of the system on the
accuracy of the generated element. Noise suppressor per-
forms an output confidence weighted matching to converge
to the closest stored RLP. This RLP is then passed to the
archive sub-system to retrieve the actual image.

6. Experiment Results
Below we show the experimental result of a prototype

system implemented on a Silicon Graphics Onyx platform.
A set of 20 240x120 color images was abstracted into a
holograph.

Object Density SNR (db) Correct
Match

A-PATCH-OF-BKGRD .108 9.73 1st (A1)

POND .208 24.37 1st (A1)

SIMBA .193 19.10 1st (A4)

NINJA .144 16.93 1st (A6)

FRED-ON-CAR .039 16.43 1st (A5)

A-PATCH-OF-JUNGLE .09 10.65 1st (A7)

Table-2 Object Based Query

Fig-6(a) shows an example of a typical sample image.
Fig-6(c) shows three possible alternate view points of
matching. These are few of the possible dynamic indices in
this query image. Pan-A focuses on the SIMBA. Pan-B
focuses on the FRED-ON-CAR, and Pan-C focuses on the
NINJA.The sample image was not encoded in the holograph.
However, the decoder process pulled out, Fig-6(d),(e) and
(f) from the holographic memory as closest. As evident,
although none of these stored pictures have statistical simi-
larity with the query image, yet each matched closely on the
basis of respective cognitive objects. Table-2 lists the
performances for some typical queries. The 2nd column in
each table shows the density of the focus window (w) of each
of the used object features.



7. Conclusion

7.1 Space and Time Efficiency
In this research we have indicated how a truly content

based search mechanism based can be instituted based on a
new computing paradigm. The advantages of traditional
model based approaches are generally the search speed and
condensed representation space. Although these two
approaches can notbe compared in terms of theircapabilities,
yet it can be argued that our new approach is not inefficient
either in terms of space or in terms of speed.

Space Efficiency: Table-3 shows the space situation for
few typical archive dimensions. The space factor represents
the information compression due to holographic condensed
representation. Clearly, the holographic abstract takes a
nominal2 space.

frame # of memory raw RLP holograph space
size frames loading storage size storage facto

r

128x128 512 .014 25MB 8 1.5MB .062

320x240 2048 .0088 472MB 10 9.2MB .019

1024x1024 10,000 .0030 30GB 12 170MB .005

Table-3 Holographic Space

Time efficiency: Irrespective of the number of frames
stored in the holograph abstract, it requires one complex
matrix multiplication. However, for a given retrieval accu-
racy (in the table we allowed error to be as big as 50% of the
dynamic range with ample margin. Experiments indicate that
the error can be as low as 5-10% of the dynamic range even
when the memory load factor reaches .25 to .5) the size of
the RLP, and thus the size of the holograph increases only
logarithmically with the number of patterns. Thus, the
holographic search is of logarithmic order in terms of the
number of frames stored. This is equivalent to a conventional
search into an ordered set. In fact, the holographic encoding
can be considered as a multidimensional ordering process.
In comparison, conventional image database requires linear
time for comparable search. Such logarithmic time asso-
ciative search into a massive image space makes it feasible
to allow direct spatial search with series of rotated/shifted
templates. This is not realistic with conventional image
database, where the images are stored as unordered pile of
pixels.

7.2 Bounds of Representation
A profound nevertheless interesting issue pertaining to

our new approach as well as for any image database is that
what subset of concepts can be searched automatically?. One
of the critical requirement for our approach is that the index
concepts, used by the user, must be expressible in terms of

finite set of pixel subsets before he can search for it. Clearly,
it will not be possible to come up with a general represen-
tation of concepts such as "hill", "ocean" ever.

We believe that this is probably a fundamental limitation
for fully automatic content based search mechanisms. In
automaticmodel basedapproach, the initial model extraction
requires a filter program. In the absence of such pixel-format
representations, there also cannot be such a program.

For those concepts, which are representable, both, model
based as well as our approach can work. The relative
efficiency depends on the frequency with which a specific
representation is recalled. If the set of such concepts is
smaller or at least finite, then most probably it is profitable
to run these concept filters at the encoding time and build up
a concise model based representation from computational
efficiency point of view. On the other hand, if the repre-
sentation is more subjective and non-reusable, then it will be
more efficient to compute the concept at the query time as
in our approach.

7.3 Recommendations
Collective experience over a period of two decades

evinces that most likely there is no panacea to solve the
complex problem of image information management. Var-
ious approaches have been developed in these two decades
to address various special cases, of this extremely complex
problem, all with their relative strength and weakness.

In this research we just present another approach for
searching into image information, which has its advantage
when the content it self does not show any unambiguously
distinguishable structure. However, most probably, any
intelligent image database has to be collection of many
complementary search mechanisms. As a whole, the content
based search is not only a database problem, but also a
problem of understandingour own mechanismof perception.
Finally we would like to make the following recommenda-
tion as a direction towards future research:

1.Fusion of pictorial and logical reasoning: The
information contained in a picture is extremely complex.
Some of it is better communicable in graphical language
(such as spatial relations), some may be in command lan-
guage (such as logical constraints) and some may be picto-
rially (such as a tree). An effective image management
system should be able to harmoniously fuse various
representation languages.

2.Fusionof content and context-basedsearch:The tag,
condensed representation as well as direct content search, all
have their advantages as well as disadvantages. A good
database should be able to provide alternate and comple-
mentary search strategy to coherently reason into all three
segments of image information.

2 The problem in direct comparison is that it is difficult to estimate exactly how many symbolic keywords are sufficient to describe a scene. Is a
picture worth a thousand words?



3.Modeling of user expectations: The understanding of
users subjective expectation is both critical as well as
difficult task. Automated techniques are need to reduce the
cost of modelling user’s expectation. The idea of user
profiling can be incorporated into other approaches too.

The authors would like to thank Yu Jun and Sheng Liu
for their wholehearted and diligent assistance in tracking
many relevant works mentioned in this paper. The authors
would also like to thank Charlie Lee, who helped us with his
subjective model of Ninja.
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