
From Proceedings of1

The 5th International Conference on
Software Engineering and Knowledge Engineering

June 14-15, 1993
San Fransico Bay, uSA

1 Copyright 1995. All rights reserved. Published in the Proc. of 5th International Conference in Software Engi-
neering and Knowledge Engineering, SEKE’93, June 1993, pp301-303.

Formalism for Hierarchical Organization and Flexible
Abstraction of Program Knowledge

Javed I. Khan and Isao Miyamoto
Software Engineering Research Laboratory

University of Hawaii at Manoa
javed@wiliki.eng.hawaii.edu

Abstract
This paper describes a formalism for program knowledge
structure which can support hierarchical representation
of conventional programs for the purpose of flexible
program abstraction. The resulting abstraction system can
automatically extract program knowledge and formulate
concise and abstract description of the program by
organizing its instruction and data spaces as well as their
inter-relationships. Unlike most other abstraction sys-
tems, this formalism allows flexibility in the selection of
abstraction level, without enforcing any pre-engineered
abstraction format.

1 Introduction
The notion of hierarchy has been used as a method for

knowledge organization from the ancient time in the
"reverse engineering" of nature. In Veda, the classifica-
tion of matters, in biology, the taxonomy of flora and
fauna, in geology, the classification of rocks are just few
examples which show how the hierarchical organization
of accumulated concepts have helped the human learning
and gradual understanding of natural processes. It is no
wonder, in the reverse engineering of software codes, a
similar attempt to formulate the knowledge and concepts
associated with software processes in a hierarchical
organization, is expected to facilitate understanding of
computer programs. Specially when, hierarchies have
been used extensively in various sophistications in the
forward engineering [3].

Organization of the overall knowledge space asso-
ciated with the code is critical in creating and prudently
guiding expectation (to know what to learn, which is a
precondition for any learning) in the context of computer
programs re-learning. In fact, such organization is pre-
requisite for both the plan as well as code knowledge
driven approaches.

In this paper we would like to present a symmetrical
function and data hierarchical decomposition based for-
malism for the organization of program knowledge
through abstraction. It focuses on the information that can
be obtained or derived from code. Our approach has two
important distinction from most of the previous
approaches in program abstraction [1,3,5]. First, we
would like to emphasize, not only on the function space
but also on the understanding and organization of data
space as well. Secondly, the level of abstraction is not
pre-engineered into thesystem, ratherwe allow thehuman
expert to flexibly select appropriate abstraction level.

Sections 2 and 3 respectively describe the program
model which provides an intuitive latitude bound of the
program information space, and the resulting program
knowledge structure. Finally, section 4 provides the
scheme which extracts the program knowledge from

source code and organizes them into the knowledge
structure in the form of concept hierarchies leading to
flexible abstraction.

2 Program Information Space
Our program model is conceptually rooted into the

very von Neumann architecture, where, the aggregate
information flow through a processing element is dis-
tinguished into two principal flows: data stream and
instruction stream. As a direct consequence, all
conventional programs, irrespective of their sophistica-
tion, may be viewed as consisting of two principal
entities;(i) function and (ii) data item.

A program P thus, can be viewed as a pair of principal
entities , where F(P) is a finite set which
includes all the instructions (or functions) stated in the
program. And D(P) is the set of all the data items stated
in P and accessed by the members of F(P).

Two entities can be inter related in at most three
different manners. For our case; these are relationships
between (iii) two functions, (iv) two data items, and (v)
a function and a data item. Any program knowledge
belongs to either of these five concepts. Each of these
concepts is defined by its associated attribute (or "info-
rmation") which is generally either extracted from the
source code or deduced by the reverse engineering
process. Below we formally define the concept space of
a program P:

Definition 1: A function concept in program P is
defined as an associated set <fi,If> where, F(P) is the set
of all the functions(that which affects the program
execution through instruction stream) of program P, and
fi∈F(P). Each of the concepts in F(P) is bounded by a set
of attributes AF. If refers to function information or the
attribute values of AF in fi.

Definition 2: Analogously, a data item concept in
program P is defined as an associated set <di,Id> where,
D(P) is the set of all the data objects (that which affects
or is being affected by program execution through data
stream) of program P, and di∈D(P). Each of the concepts
in D(P) is bounded by a set of attributes AD. Id refers to
the data information or the attribute values of AD in di.

as mentioned, in the folds of P, there lies three
relational concept space generated from the product of the
principal entities of P.

Definition 3: The concept of all the possible relations
between two functions is a member of the set of
program P, and is specified as . Each member
of has a corresponding . IΣ

refers to the attribute values of the attribute set AΣ that
defines the concept.

< F(P), D(P) >

Σ(P)
< fi, fj, IΣ >

Σ(P) < fi, fj >∈ F(P) F(P)

301

Definition 4: The concept of all the possible relations
between two data items is a member of the set of
program P, and is specified as . Each member
of has a corresponding . IΦ

refers to the attribute values of the attribute set AΦ that
defines the concept.

Definition 5: The concept of all the possible relations
between a function and a data item is a member of the set

of program P, and is specified as , Each
member in has a corresponding

. IΨ refers to the attribute values of
the attribute set AΨ that defines the concept.

The total concept space associated with a program is
defined as:

Similarly the total information space associated with
a program P is:

Any knowledge associated with code based program
understanding belongs to either of the five sub-spaces of
P. Below we will state that in the form of theorem. The
proof is evident from the definitions of the concept
classes.

Theorem 1: Any information, which is explicit in the
code, or can be sufficiently deduced from the code,
belongs to the five information spaces of P.

Both theauto-relation concepts canbe further
subdivided into temporal and spatial relations. For
instance, can be divided into two major components

where, refers to the depen-
dency related to the time sequence of accessing the
instruction stream between the function objects. On the
other hand refers to the dependency related to
composition of function entities. As an example, control
flow information lies in . In a non-self-recursive
program explicit syntactic control information C

For a relation
, u represents the predecessor function and v

represents the successor function in a control path. Gen-
erally the difference space

. The
relation ship between a subroutine and its constituent
instructions is compositional and is an example of .
The concepts regarding the relations among data items
can be similarly classified as
where, the temporal relation refers to concept
among the modify/write/read dependencies among the
data items. And refers to the spatial type sub-
sumption relation as found among structure/union,
record/field etc. Use/def dependency type dependency on
the other hand belongs to . Only a part of the total
concept space is generally explicit in a program code. For
example, the control flow between two consecutive
statements is generally explicit, but the control flow
between any two statements may not be explicit and
obvious. The objective of various dependency analysis in

software engineering can be broadly categorized as the
derivation of these implicit informations from the explicit
components.

3 GHPM Knowledge Structure
On the basis of above program model, the following

semantic network based formalism called Generic Hier-
archical Program Model (GHPM) has been defined using
the meta language MERA [2] to represent and process
program knowledge. The semantic network is built up of
entity-nodes and relation- edges such that,

, and . The
information associated with the program concepts is
defined and stored as attribute: value pair in the defining
slots associated with the entity and relation objects. Fig-3
shows the definition of the formalism.

Fig-3
GHPM uses two relations to attain space efficiency

while representing . The spatial and temporal relations
are respectively named as "IN_comp" and "CF_dep".
Petri-net like "FORK" and "WAIT" are used to represent
concurrent paths in "CF_dep". Symmetrical to functional
relation, GHPM uses two different relations "DI_comp"
and "DF_dep" to represents the spatial and temporal part
of .

GHPM maintains three attributes of or relation
"ID_relation". These are, (i) the data dependency among
the data items and functional blocks (SD_effect). (ii) the
role of a data item in a function (CD_use={C_IN, C_PT,
NULL}), and (iii) the block relative scope boundaries of
thedata items (BL_scope={INTERNAL,EXTERNAL}).

4 Abstraction by Hierarchies
A monolithic source code (shortly, we will show the

natural extension to non-monolithic multi-module pro-
grams) provides a base model at the abstraction level,
which is generally representative of the level of the
programming language. The base model consists of the
function and data entities. Our system accepts this base
model as input and gradually constructs abstract or

Φ(P)
< di, dj, IΦ >

Φ(P) < di, dj >∈ D(P) D(P)

Ψ(P) < fi, dj, IΨ >
Ψ(P) GHPMentity = {F , D} GHPMrelation = {Σ, Φ, Ψ}

< fi, dj >∈ F(P) D(P)

E

E E E E EA

A

A

A

A

A A

A

A

A

AA A A A A
IN_titleIN_trace

IN_spec

IN_struct

IN_CES

IN_level Process Branch Join Fork Wait IO_scope DI_trace

DI_rest

DI_value

DI_format

DI_levelDI_titleCD_useBL_scopeSD_effect

E

CF_dep

IN_comp

ID_relation

Instruction

Data_item

DF_dep

DI_comp

A E RELATION

ENTITYATTRIBUTE

HAS-ATTRIBUTE IS-SUBTYPE-OF

MERA Legends

GHPM Formalism

A
IN_doc

A
DI_doc

P = {F , D , Σ, Φ, Ψ}

IP = {IF, ID, IΣ, IΦ, IΨ}

Σ, and Φ

Σ
Σ(P) = {Σt(P), Σs(P)} Σt(P)

Σs(P)

Σt(P)

IΣ⊆ F(P) F(P) − {< p , p >| p ∈ F(P)}.
< u , v >∈ C

{F(P) × F(P) − {< v , v >| v ∈ F(P)}} − C ≠ ∅

IΦΣs(P)
IΨ

Φ(P) = {Φt(P), Φs(P)}
Φt(P)

Φs(P)

Ψ(P)

302

composite data and function entities in a bottom up
fashion and organizes them into two hierarchies named
as (i) Hierarchical Data Model (HDM), and (ii) Hierar-
chical Function Model (HDM).

Fig-2
Figure-2 shows the process for an arbitrary computer

program P which is made up of 5 statements and 4 data
items. In this figure the left and the right trees respectively
denote hypothetical configurations of the HDM and HFM
of P. The leaves nodes of the hierarchies denotes the
concrete (those which are not abstract) entities of P and
other nodes are generated abstract or composite entities.
Let its statements are ,
where, δi refers to the data set associated with each of the

statements. Then . And let

. The atomic (base) entities receive
attribute values directly from the corresponding atomic
statementspresent in the source code. Theabstract entities
(such as the "?" marked relations) generate their slot
values during the abstraction process through a set of
appropriate grammars. The abstraction process can be
viewed as the systematic compression of the sets F(G)
and D(G) at each level by re-organizing or rediscovering
implicit spatial relations in Σs(P)and Φs(P).Any complete
cut across the hierarchies forms a complete description of
the program. The average height of the cut intuitively
provides a measure of abstraction of that particular
representation. (For example cut A is more abstract than
cut B). The hierarchical representation makes it possible
to flexibly transcend between different abstraction levels
by gradually moving down and up the hierarchies. At each
level, the abstraction grammar provides the deduction
ability of the inter-relations and entity attributes. At the
root of the two hierarchies, the concepts in and

becomes empty. Thus, the specification of the

tworoot entities and their interrelations,
becomes the ultimate abstract description of the program
P.

Multi-module (non monolithic) programs can be
viewed as partially abstracted program, where, each of
the sub-routine is a priori-abstracted module in HDM.
Thus, multi-module programs only provide an advanced
starting point where some of abstraction already has been
done by the programmer. The function and data hierar-
chies are generated using a technique based on the theory
of proper decomposition [3]. The details of the prototype
algorithm and specification generation rules can be found
in [4].

5 Complexity
Below, we present an informal estimate of space

complexity of the representation formalism. Rigorous
estimate will require the analysis of detail algorithms
which is beyond the scope of this paper.

Theorem 2: For a input problem with M basis
functions and N basis data items the total space
requirement is O(MN).

Proof: The base model will require M function blocks
and N data items and at most MN relation entities. The
abstract hierarchical model will have at most 2M function
blocks, 2N data blocks and thus at most 4MN relations.
Thus, the full abstraction space is 2M+2N+4MN. Thus,
the space requirement is O(MN).

The target system is intended to generate program
abstract from a large (1000-2500 line) but not necessarily
complex programs in a reasonable time and space. A
proto-type abstraction system called Hierarchical Pro-
gramAbstractionSystem (HPAS) for COBOLhas already
been developed and is currently under testing with real
sized programs.

6 References
[1] V. R. Basili, S. K. Abd-El-Hafiz, G. Caldiera,

Towards Automated Support for Extraction of
Reusable Components, Proceeding of the IEEE
Software Maintenance Conference, Sorento,
1991.

[2] MERA: Meta language for Software Engineering,
Proc. Of the 4th Intl. Conf. on Software Engi-
neering & Knowledge Engineering, June, 1992,
Capri, Italy, pp495-502.

[3] J. E. Hartman, Automatic Control Understanding
for Natural Programs, Ph.D. Dissertation, Univ.
Of Texas at Austin, May 1991.

[4] Javed I. Khan, Hierarchical Program Abstraction
System Design Documents, Technical Report
92-30/92-31,Software Engineering Research Lab,
Univ. Of Hawaii, Sept, 92.

[5] M. Weiser, Program Slicing, IEEE Tran. On
Software Engineering, v. SE-10, no.4, July 1984,
pp352-357.

{Froot, Droot, Ψroot}

HDM HFM

R

W

?

?

0

1

2

3

0

1

2

3

DATA ABSTRACTION LEVEL FUNCTION ABSTRACTION LEVEL

ABSTRACTION LEVELS

CUT A

CUT B

CUT A

CUT B

?

root root

Most Conscise Program Description

{f1(δ1), f2(δ2), f3(δ3)f4(δ4), f5(δ5)}

∪
i = 1

5

δi = D(P)

D(P) = {di | 1 ≤ i ≤ 5}

Σroot(P)
Φroot(P)

303

