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ABSTRACT

The paper presents mathematical and empirical results on the behavior of a new multidi-
mensional neural computing paradigm called multidimensional holographic associative com-
puting(MHAC). MHAC can be potentially used for high density associative storage and retrieval
of image information. Unlike conventional neural computing, each morsel of information in MHAC
is represented as a complex vector in a multidimensional unit spherical space. Each of the individual
phases of the vector enumerates a value of the information. The magnitude of the vector represents
theassociated confidence in the information. In contrast, theconventional neural computing operates
only on the notion of confidence. The proposed multidimensional generalization demonstrates
significant improvement in associative storage capacity without the loss of generalization space.
Virtually,unlimited patternassociations can be enfolded overa single holographic memory substrate
by higher order encoding. In addition, its well-structured computation, simultaneous muti-channel
learning, and single step non-iterative retrieval promise highly scalable parallelism. The paper
presents the theory of operation of MHAC that is founded on the generalized holographic principles
and multidimensional Hebbian learning. The paper also presents analytical as well as empirical
evidence from computer simulation supporting the superior performance of MHAC cells.

1 INTRODUCTION

Associative computing is destined to play a key role in the rapidly evolving field of intelligent
image data-base management. Associative computing forms the heart of applications involving
content-based retrieval, query by example, indexing by color, texture, shape and real-time database
query.

1 Copyright   1994. All rights reserved. Published in the Proc. of the IS&T/SPIE Symposium on Electronic Imag-
ing Science & Technology, San Jose, CA, February 1994.



Associative computing has long been thought as an integral part of human cognizance. Optical
Holography is one of the first artificial system to demonstrate associative processing capabilities.
Since it’s advancement, a number of authors4,5 have drawn the analogy between the brain and
distributed memory. In search of simpler representations of optical holographic models of memory,
that would be suitable for conventional computer implementation, Gabor2 noted that systems
computing cross-correlation or convolution can mimic Fourier hologram. During the early seventies
Willshaw performed comparative studies on various digital associative models such as correlograph
and cross bar associative network6. Later on more variants such as Hopfield network, Brain State
in a Box network, Bi-directional Associative Memory (BAM), etc evolved1.

Most of these current models of associative memories suffer from two critical setbacks. The
most serious of them is their extremely limited storage capacity. The other one is the complication
in storing patterns that are very similar to each other, requiring enfoldable patterns to be orthogonal
or dissimilar.

In an effort to overcome these setbacks, in this paper we present a new multidimensional
associative computing paradigm, which has the potential of challenging both of the aforementioned
barriers. The basic computational model is simple and based on pre-existing ideas. In a broad sense,
it can be considered as a logical generalization of Hopfield’s Network as well as the generalization
of optical holographic principles.

In this model, unlike, the conventional artificial neural networks (ANN), each element of
information is represented as a multidimensional complex number. Conventional ANNs use only
scalar representation of information. Previously, Sutherland3 proposed a 2-D model of network.
Interestingly, the original optical holograms also process information in 2-D form as represented
through light wave. However, the pioneering efforts simplified the computation mode into scalar.
In this research we attempt to investigate the re-institution of the lost dimension. In fact we
investigated a more general, multidimensional network with encouraging results. The 2-D repre-
sentation itself offered higher capacity and retrieval accuracy than the conventional networks. The
muti-dimensional generalization seems to even surpass the performance of the later under certain
conditions. In addition to higher capacity, the proposed model does not require the enfoldable
associations to be orthogonal.

This paper presents mathematical and empirical results on the behavior of this generalized
multidimensional holographic network. Section 2 first presents the basic model. Then, section 3
explains the mathematical basis of multi-dimension extension and finally section 4 presents
empirical results from extensive computer simulation of this model.



2 THE MODEL

2.1 Representation

A stimulus pattern is represented as a suit of stimulus elements in the form of .

In conventional ANN, the individual elements or information content of a stimulus pattern are
expressed and processed as a scalar valued real number extending over a given range. In our
approach, instead, through a suitable transformation, the scalar stimuluspattern elementsaremapped
onto complex valued numbers with individual dimension elements in the range of , such
that:

where, is a vector which is expanded inside a unit sphere in ad-dimensional

spherical space. Each of the is the spherical projection (or phase component) of the vector along
the dimension expressing the content of information, and is the magnitude of the vector,
expressing the confidence on the information inscribed in the phase components.

Sutherland’s representation3 is a direct 2-D special case of this more general representation
scheme. The multidimensional mapping of stimulus element from the external scalar field intensities
is performed by some non-linear mapping. In many physical cases, the phase components can be
directly obtained from the sensors. For, example for color images, the three basic color intensities
can be directly translated into three dimensional components resulting in a 4-D representation.

Thus, a stimulus pattern is represented as:

Similarly, the response patterns are also obtained. A similar mapping on the external scalar
response field intensities provides the response representation:

2.2 Encoding

In the encoding process, the association between each individual stimulus and its corre-
spondingresponse aredefined in the form of acorrelation matrix by the innerproduct of theconjugate
transpose of the stimulus and the response vectors:
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If the stimulus is a pattern with n elements and the response is a pattern with m elements,
then is a matrix with d-dimensional complex elements.

The strength of this new paradigm is derived from the fact that an enormous number of such
associations can be learned and stored on the same space by superimposing the individual
correlation matrices onto the same storage elements.

A suit of associations derived from a set of stimulus and corresponding response is stored in
the following correlation matrix X. The resulting memory substrate containing the correlation matrix
is referred as Holograph.

2.3 Retrieval

During recall, an excitory stimulus pattern is obtained from the query pattern:

The decoding operation is performed by computing the inner product of the excitory stimulus
and the correlation matrix X:

Where, N is a normalization variable, representative of the number of elements in each
stimulus pattern.

If, the excitory stimulus , bears similarity to any priory encoded stimulus , then the

generated response also resembles its corresponding response pattern . On the other hand,
if does not correspond to any of the enfolded associations then the elements of demonstrates
distinctive low magnitude indicating absence of the requested information in its enfolded memory.

By combining, the encoding and decoding operations expressed in equation-2 and equation-3,
the retrieved association can be decomposed into principal and cross-talk components.
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Equation-4 provides the following important insight about the characteristics and capability
of this new network.

1. If , then , on the other hand, the cross talk component ,

as it appear to be the sum of randomly oriented vectors in d-dimensional space.

2. Thisnew paradigmdoes not suffer from the linear separability problem like theconventional
scalar ANN. The magnitude of the , only when the encoded "information" or the
phase components are similar. The relative orientation of linearly non-seperable stimulus pattern
vector can not produce spurious minima.

3. The growth of the cross talk component decides the capacity of the network. For, acceptable
recall performance, the magnitude of the cross talk must remain well below unity. The magnitude
of the cross-talk component indicates the saturation level of the holograph.

3 MATHEMATICAL BASIS FOR MULTIDIMENSIONAL COMPUTING

The saturation or cross-talk component of Holographic substrate as shown by equation-4 can
be rewritten in the following form, where represents the resultant product vectors:

For practical purpose, the saturation can be thought as proportional to the sum of a set of
randomly oriented vectors. In this section, it will be demonstrated that a set of superimposed unit
vectors distributed in m-dimesional space tends to be larger than the superimposition of the same
set of vectors performed in an n-dimensional space, when m < n resulting in lower holograph
saturation. The tendency increases with the increase in the skew of phase distributions of the vectors.

Equation-5 also shows that the saturation is inversely proportional to N, the length of the
stimulus vectors.

3.1 Vectors in Multidimensional Space

Let us consider a set of P vectors with uni-normal projection in n and m dimensional spaces

respectively, where . In this notation, the number with the vector arrow indicates

the dimensionality of the vector. We would like to investigate the following inequality:
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Let the n-dimensional vector (left hand side components of (6)) is represented as:

Where, the middle representation is the representation of A in n-dimensional spherical co-
ordinates and the right representation is its corresponding n-dimensional rectilinear representation.
Let, the transformation between the two co-ordinate systems are given by:

Now, let us define a m-dimensional spherical sub-space of the above n-dimensional space
using its first m-1 dimensions. Then the uni-normal projection vectors of A in m-dimensional space

( ), (right hand side components of (6)) become:
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3.2 Dimension Dispersion Component

Using (7a) and (7b) and some trigonometric manipulation step 2 has been derived from step
1.

In a similar way it can be further derived:
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Each of the Bk term accounts for the change in saturation for adding a dimension and we call
it Dimension Dispersion Component (DDC) of the vector magnitude.

3.3 Holograph Saturation and Dimension Dispersion Component

DDC plays the key role in the saturation of the holograph. As demonstrated by equation-8,
positive DDC asserts the validity of the inequality stated in equation-6. The greater is the value of
DDC, the lower will be the saturation in the holographic substrate.

DDC is a function of the distribution of the individual phase components. We would now
like to investigate how the distribution of phase may effect the magnitude and in particular the sign
of DDC.

Stocastically, the expected value of DDC is:
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From the above analysis we may draw the following important conclusions about the nature
of the DDC terms.

(i) Stochastically, the expected value of the DDC terms, in general, will always be positive,
irrespective of their specific distribution with independence and identical assumptions.

(ii) Deterministically, if the phase components are distributed in such a way that
, then also the DDC terms, in general will always be positive.

(iii) The expected value of DDC , as the distribution

. Thus, the lowering of holograph saturation due to dimension

dispersion becomes increasingly pronounced as the distribution shifts towards non-symmetry.

(iv) , hence, the DDC decrease with the increase in dimension. At higher dimension

moreand more terms contribute to the product. Thus, the improvement due to DDC is relatively
more effective at lower range of dimension.

4 EXPERIMENTS

We have performed a set of experiments to empirically measure the improvement due to
dimension dispersion. The first two plots, Fig-1(a) and 1(b), show the growth of correlation mag-
nitude ( y axis) or the saturation level on the holographic substrate with the increase in the number
of stored vectors (x axis). Two figures show the saturation for two different distributions of the
stored vectors. To investigate the effect of skew in the stimulus data distribution (expected in natural
image data), we have used band limited distributions. The narrower band range represents more
skewed stimulus distribution. In Fig-1(a), the phase components are uniformly distributed with in
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the range of . On the other hand, in Fig-1(b), these are distributed in the range of
. For this experiment, the vector elements and their phase components are ran-

domly generated.

Fig-1(a) Fig-1(b)

As shown on both of the figures, the saturation increases almost linearly with the increase of
number of associations. In general the growth rate is smaller for higher dimensionality. This
characteristics is most apparent in Fig-1(a) and less apparent in Fig-1(b). With a limit of operating
saturation at 20% (20 in y scale), the number of patterns that can be enfolded with in this limit,
increases from 32 for 2-D to 100 for 5-D orientation of the pattern associations in Fig-1(a). With a
limit of 10% saturation, the number of enfoldable pattern increase more dramatically, from 25 for
2-D to 100 for 4-D.

Fig-2 plots the saturation with respect to the memory dimension (x axis). It plots the saturation
characteristics for several distribution bands of the vector phases. As the dimension is increased,
the saturation decreases. The best result is obtained when the phase components are distributed over
the full range resulting in very little (~10%) saturation. However, as the band becomes narrower
the saturation increases. The difference is more at lower dimension. On the other hand the difference
in saturation due to narrow band distribution drops at higher dimension. For example, at 7-D
spherical space, the saturation with narrow band distribution, |R| <90 approaches to the ideal dis-
tribution with |R|<180.

+π/2 ≥ θ ≥ −π/2
+2π/3 ≥ θ ≥ −2π/3
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Fig-2

Fig-3(a) and Fig-3(b) finally presents the performance of a simulated single cell multidi-
mensional holographic associative memory. In the test, P (=16) vectors of S (=32) elements, each
with D dimensions, are randomly generated. Each of the dimensional phase components are
randomly generated with uniform step distribution within the range R.

Each of these stimulus vectors are associated with a matching response vector. The correlation
among each of these stimuli and responses are superimposed on a multidimensional holograph.
Each of these response vectors, are then recalled using the corresponding stimulus as the query
pattern. During the recall process the principal component and the cross talk components of the
recalled response have been separately measured. The experiment presents the recall performance
in terms of signal-to-noise ratio (SNR) and cross-talk for memories of various dimensions (D=2
to 10).

Fig-3(a) plots the signal to noise ratio (SNR = average signal/ average corss talk) against the
dimensionality. Fig-3(b) plots the cross-talk component against dimensionality.
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The results indicate SNR improves (Fig-3(a)) and cross-talk (Fig-3(b)) decreases as we use
higher dimensional holograph. The improvement is more significant for the narrower band stimulus.
For |R| <90, the cross talk component reduces from 13% to 2.5% as the dimensionality is improved
from 2-D to 4-D. Thus the improvement due to dimension dispersion is more prominent when the
skew in input vector distribution is higher.

Fig-3(a) Fig-3(b)

5 CONCLUSION

As shown in equation-5, the capacity of the holograph is also linearly proportional to the
length of the stimulus pattern. Experiments have shown that the number of images that can be
superimposed on a single holograph and retrieved with less than 5% recovery error is almost .5
times the number of pixels in each image. This capacity is linearly expandable with stimulus length.
In fact, higher order encoding can make the capacity virtually unlimited3.

The results presented in this paper implies that by increasing the memory dimension poten-
tially larger number of associations can be stored in MHAC than conventional associative memories.
However, the digital reconstruction of the holograph on conventional digital memory may not
directly correspond to the performance gain indicated in our experiment. The actual digital memory
requirement also involves the bit allotment to represent individual dimensions of the holograph
elements, which in terms is dependant of the distribution and nature of the data.

Response Recall Characterstics

Dimension

S
N

R

Stimulus Length=32, Patterns=16

2 3 4 5 6 7 8 9 10

60

50

40

30

20

10

0

|R|<45 |R|<60 |R|<90 |R|<120 |R|<180

Hologram Saturation Characterstics

Dimension

C
r
o
s
s
 T

a
lk

Stimulus Length=32, Patterns=16

2 3 4 5 6 7 8 9 10

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

|R|<45 |R|<60 |R|<90 |R|<120 |R|<180



The encoding process of MHAC (equation-2) shows that all the pattern associations can be
stored simultaneously. On the other hand, the decoding process (equation-3) is also non-iterative
single step computation. The computations involved in both encoding and decoding are straight
forward multidimensional matrix product operations. Thus, the entire operation of MHAC offers
high degree of parallelism with a potential of real time application. Interestingly, depending on the
application constraints a trade-off can be performed at the encoding stage. Our experiments has
shown that a Differential Hebbian learning (DHL), instead of Hebbian learning, can further increase
the capacity of MHAC. However, DHL is intrinsically sequential.
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7 APPENDIX

In this appendix we show the derivation of a dimension dispersion component in the context
of step 1 in section 4.2. By expanding the (n-1)th and nth dimensional components of the vector sum
according to equation-7a:
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Which can be expressed as:

This corresponds to step-2. The DDC is given by:

by expanding the last two square terms and rearranging the result,
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cos θk
2 + 2 cos(θn − 1

2 − θn − 1
3 ) ∏

k
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cos θk
2 ∏

k

n − 2

cos θk
3 + ….

= ∑
k

n − 2∑
i

P

xk
i

2

+ ∑
i

P  ∏
k

n − 2

cos θk
i 

2

+ ∑
i

P

∑
j ≠ i

P

cos(θn − 1
i − θn − 1

j ) ∏
k

n − 2

cos θk
i cos θk

j

= ∑
k

n − 2∑
i

P

xk
i

2

+ ∑
i

P  ∏
k

n − 2

cos θk
i 

2

+ ∑
i

P

∑
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P

∏
k

n − 2

cos θk
i cos θk

j − Bn − 1

= ∑
k

n − 2∑
i

P

xk
i

2

+ 
∑
i

P  ∏
k

n − 2

cos θk
i 



2

− B(n − 1)

Bn − 1 = ∑
i

P

∑
j ≠ i

P

∏
k

n − 2

cos θk
i cos θk

j − ∑
i

P

∑
j ≠ i

P

cos(θn − 1
i − θn − 1
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k

n − 2

cos θk
i cos θk

j

= ∑
i

P

∑
j ≠ i

P

[1 − cos(θn − 1
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k

n − 2

cos θk
i cos θk
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