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Abstract

The paper presents ascheme for reducing memory space of aholographic associative memory for content based
learning, searching and retrieval of sparse patterns. Holographic associative memory developed on the properties of
complex valued Riemann space is one of the most promising models of associative memory. It has demonstrated 10
to 100 times speedup than most other models of associative memories in learning pattern associations with nearly
arbitrary level of complexity. The correlation space of the sparse patterns, is also sparse in information, but repre-
sentationally dense. Therefore, holograph of sparse patterns (such as images) becomes extremely large. In this paper
we describe a holographic memory model which projects the sparse holograph on a reduced memory space along all
three of itsdimensions by unsupervised learning of the stimulus and response patterns. The resulting hol ographic model
also simultaneously increases the encoding, searching and decoding speed.

1 Introduction

Associative computing isexpected to play acritical rolein thefield of intelligent image data-base management.
The applications such as content addressable retrieval, query by example, indexing by features; such as color, texture,
shape, al these require some form of associative recollection.

Since the advancement of synoptic theory of signal transmission by McCulloch and Pitts (1943), and Hebb
(1949) a number of models of artificial associative memories have been developed to mimic the behavior of human
brainby researcherssuchasMarr (1969), Anderson (1989), Willshaw (1971), Kanerva (1988) and many others[Kane88,
Will89]. These pioneering model swere able to reproduce some of theintriguing behaviors of human brain. Two of the
most serious concern with most of these associative memories are their capacity and difficulty in storing arbitrary
patterns. However, for image applications, the problem becomes more acute in terms of enormous physical memory
requirement. Very few work has been done to make the assosiative memory space efficient.

A typical image pattern generally consists of alarge number of pixels, and by nature individually they carry
small amount of significant information. Asaconsequence, thecorrel ation space of theimage pattern becomesphysically
large but sparse in information. The objective of our research is to find ways to extract useful information from this
sparseness of the correlation space and to contract the space of associative memory.

Our research is specifically aimed at a model of holographic associative memory proposed by Sutherland
[Suth90], which has demonstrated a major break through in speed and capacity. Experiments have reveal ed speedup
of factors 10 to 100 times compared to other paradigms [ Souc92,p8]. Multiple pattern associations at nearly arbitrary
complexity, without hindered by the linear separability problem, can be enfolded with the holographic memory. Thus,
it challenges the principal two limitations of earlier models. The memory operates in complex number domain, in
contrast to most other models. The holographic memory itself can be considered as a 3-D volume. The first two
dimensions are the stimulus and response pattern elements. The 3rd dimension or the depth representsthe bits required
to store each of the correlation element. In this paper we present auniform technique based on the autonomous learning
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of patterns to contract the holograph along all three dimensions based on the sparseness analysis of the correlation
information. The next section presents a background on holographic associative memory. Section 3 presents the con-
traction model. Finally section 4 provides some performance results from a simulated holograph.

2 Background and M athematical Basis

2.1 Bi-Modal Representation

A pattern S is a suit of stimulus elements in the form of {s,s,,.....s,}. The individual pattern elements are

represented as a complex number, where the magnitude of the complex number is representative of the confidencein
the element and the phase of the complex number enumerates the content. Unlike the conventional representation
schemes, our model treatsinformation asabi-modal (confidence:content) notion. Thusastimulus and response patterns
with respectively n and g elements are represented as:
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The content of each element (s, r;) is transformed to the phase exponent (6, ) through some suitable trans-
formation. A sigmoidal transformation can agenerate uniform phasedistributionif the stimuluselementsaredistributed
normally. A is assigned a confidence value between 0 and 1.0.

2.2 Holographic Memory Model

Holograph storesalargenumber of stimulusand response pattern associ ationsin theform of complex correlation
matrix. The encoding is performed by super-imposing individual correlations on the same holographic memory sub-
strate. Despite the superimposition, provided with aquery stimulus, the holograph can regenerate the closest associated
response. An association is encoded as the correlation of the response and the transpose conjugate of the stimulus
patterns. (In this paper we will use a superscript T to denote the transpose and the bar to denote transpose).

A=R[B

All such (k) associations are enfolded by superimposing them in the holograph.
k
H= Z A ...(1a)

The learning equation (1&) has been improved to encode only that part of a new association that is new, instead
of the whole. The component of a new association which is already learned is not encoded. The following equation
forms the differential learning algorithm for the holograph which incorporates this modification.

H=H+(R-H®S ..(1)

The differential learning has demonstrate lower saturation and higher capacity of the holograph [Suth90]. To
associatively retrieve a pattern, a query pattern S, is convolved with the holograph for target response R,,.
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If the query is close to some priori encoded stimulus S; in the holograph then the target response resemblesthe
corresponding response pattern R;.

The underlying process can be explained through the recovery of asingle response element, through (1a). Let
the subscripts i and j refer to the element index and t refers to the association index. According to (1a) and (2), thej"
element of the query response:
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If & iscloseto some priory encoded stimulus S, -1, then the above equation can be rewritten as:
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Thephase of thefirst summation term hereisexactly equally to the phaseof r; 1,. Because, the product §;T)Sﬁ T

isalwaysascalar quantity. For symmetrically distributed associations, the second summation contributes as arandom
walk in thetwo dimensional vector space, Thelength of this path growsvery slowly with the square root of the number
of vectors. Thus, the resulting response phase closely resembles the phase of the correct response.

If both the stimulus and response patterns are identical, then holograph acts as a content addressable auto
associative memory. More extensive analysis of this holographic process can be found in [Suth90, KhY u94]. Now we
will concentrate on the reduction of physical space required by the holograph H, which is the key.

3 Dimension of the Holograph

For stimulus and response patterns respectively with n and q elements, corresponding holograph requires gn
complex correlations requiring alarge number of physical memory locations. Our objectiveisto exploit the sparseness
of information content in the patterns and to reduce the physical memory space of the holograph. Our principal
decomposition strategy is given by the following modified form of (2):

R =T [HT,[S]] .09
Where, transformation Tg[.] projectsthe n-dimensional stimulus patternis projected on an m-dimensional space,

and transformation T3] projectsthe p-dimensional output of thehol ograph onto g-dimensional response pattern space.
The new holograph H has dimension p xm, where bothm<n, p <q.

3.1 Optimum Transformations and Feature Construction

The optimality criterion for the transformations is the faithful reconstruction of the patterns. Now we will
concentrate on the computation of the transformations, which can satisfy minimum mean square error (MMSE)
transformation criterion.

For a given sparse pattern space, the dense features are be selected from the feature space of the following
format, where each of the feature elementsis a product of the original pattern elements, each raised to an exponent.

y = NisI"” (@

An infinite number of features can be constructed from this feature space for each unique set of exponents.
However, we will choose only m such feature elements. So that the dense pattern will be of the form:
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Where g is the confidence of feature j, and {3, is the content of feature j. Thisfeature space is ageneraization
of the higher order feature space previously proposed by Sutherland to attack the reverse problem of dense pattern
[Suth90], where the pattern spaceis small in comparison to the number of features present inthe stimulus pattern. Such
situation arises in cases such as decoder problem, x-or problem etc.

The exponentsd(j, i), should be chosen to suit the MM SE optimum reconstruction criterion of the information
content. For each feature, there should be a set of n such exponents corresponding to each of the pattern elements.

There should be m such setsto construct thecompletefeature set Y. Wewill denote the exponentsin the form of matrix
D. Now, we would like to compute D which will satisfy the criterion of optimum linear reconstruction.



Let, the vector B defines a vector with the exponents (phase components) of Y, and vector © defines a vector
with the exponents (phase components) of S. Then the following iterative equations provide the autonomous learning
equation to compute D.

D=D+uBMO -LT[BB'D ...(5

Where, | is the learning constant for the encoder which is decreasing with time. Operator L T[] refers to the
lower triangularization. The reverse transformation is given by (5), which is symmetric to (4) and uses the transposed
form DT as its transformation matrix.

§i=|rj'n|yjd(j,i) ..(6)

The following two theorems explain the mathematical basis of (4), (5) and (6).

Theorem 1: If D is assigned random values at time zero, then with probability 1.0 equation (5) will converge
andD and DT will approach to a transformation pair between S and Y planes. The pair ensures MMSE reconstruction
of the phase components (content) of the suit S.

Proof: Using the bi-modal representation, a feature element can be re-written as:
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Thus, the transformation (4) in the phase plane (content) can be written in the matrix form as:
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B, isalinear combination of the individual pattern elements, where d(j, i) are the coefficients. The optimum

coefficients for linear reconstruction of the content of S can be found by determining the eigenvectors of the space
defined by the auto correlation matrix Q = E[@OT] of the patterns. Let, the eigenvectors of Q are ordered in the
decreasing order of their corresponding eigenvalues. The patterns are spanned in an n dimensiona space. Then the
subspace spanned by the first m eigenvectors will retain maximum reconstruction information for the suit of Thata for
agiven m. Thus, it will allow reconstruction of the input suit Ss from Y's with minimum mean sguare error. Sanger
[Sang89] has proved for scalar case that the learning algorithm of (5) is doing exactly that. For, bounded magnitude of
the elements of D, and decreasing |, irrespective of theinitial values, (7) convergesin such a manner that the rows of
D convergesto theeigenvectorsof Q in sorted order. Since, the matrix D isan eigenvector matrix, therefore, thereverse
transformation is given by transpose of D.O

Theorem 2: The transformation pair specified by (4) and (6), using the transformation matrix D computed
through (5) can also reconstructs the magnitude component (confidence) of the pattern suit S.

Now, we will proof the reconstruction criterion for the magnitude component of S. The forward and reverse
transformations are respectively specified by (4) and (6), which can be re-written in the following forms:

| yi I= |i_|[)\i]d(k'i) and Xp = U 'y, [P

Where, A, is the reconstructed pattern element. Expanding the right hand side of the reverse transformation,
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Since, rows of the matrix D are the eigenvectors, therefore the product of its transpose with itself isan identity
matrix of sizen.

D' =1, thus, I(p,i)= 3 d(k, p)d(k,i) = 1 when, p=i
=0 otherwise.
Thus,
A, = |i-|(>\i)'<p~i> = ()\p)li|;|p()\i)° =\, ..(8)

Thus, the above transformation pair a so reconstructs the magnitude component of the patterns.O

In fact, Sanger’'s proof can be further generalized for complex valued numbers. The basic assumptions of Oja
[Oja83] and Ljung’ s[Ljun77] theorems(which arethefoundation of Sanger’ sproof) areal so valid for complex numbers.
Thus, an equation anal ogousto (5), where B and © arereplaced by corresponding Y and S vectors, can directly compute
the eigenvector matrix.

There are several other algorithmsfor computing multiple eigenvectors such as by Brockett (89), Karhunen &
Oja(82), Kuusdla & Oja(82) [Oja83, Sang89]. However, the advantage of (5) isthat it also sortsthe eigenvectors, and
the computation in (5) can be performed using smaller final and intermediate memory.

3.2 Feature Based Associative Memory M odel

Thefollowing set of equationsprovidethe operational principleof the contracted holograph. First transformation
matrices, Dg and Dy are computed from the autonomous | earning a gorithm given by (5) using the stimulusand response

pattern suits. Then (9) is used to enfold the pattern associations onto the contracted holograph H. The query into the
holograph is performed by (10).
H =H +y[T,(R - TXHY))Y' ..(9)

R =T [HT[S]] ...(10)

In (9), Y is computed from (4), using T[l The transformations Ty[ql T:'[[l and T¢[(JJall are computed from
(4) using Dg, D, and D respectively.

3.3 Size of the Contracted Holograph

From the storage perspective, a holograph can be thought as a 3 dimensional volume. Where the first two
dimensionsrespectively represent the stimulus (n) and pattern (q) lengths. The depth dimension represents the number
of hits required to store each of the correlation elements. If b bits are used to encode each of the correlation element,
then the size of the original holographis gnb bits.

The proposed contraction method not only contracts the holograph in the first two dimensions, but also it can
be used to save spacein the 3rd dimension. The eigenvalues for the auto-correlation matrices of stimulus and response
patterns can be computed by:

D,E[GO']D! =A, DLE[®D|D] = A, ...(11)



Where, © and @ are the vectors spanned by the phase components of stimulus and response patterns. A arereal
valued diagonal matrices. E isexpectation. Each of theelementsinthe diagonal representsthe eigenval ue corresponding
to the eigenvectors arranged in D. The eigenvalues of Qg and Q,, correspond to the estimate of the variance of the
patternsal ong thedimensionsspanned by their corresponding first m eigenvectors. Each of thefeaturecontents, therefore
need not to be encoded with same number of bits. Each of them can be quantized according to their variance along
corresponding dimensions. One way of assignment isto allot bits proportional to thelog of variance. In the holograph,
each of the correlation terms requires bits equal to the sum of the bits required by the component product terms.
Therefore, if e, 8, ...6, arethe bits assigned to the stimulus feature elements, and f, f,, ... f, are the bits assigned to the

response feature elements, then the bits to quantize the entire holograph is:
=p(e,+te+...+e)+m(f +f,+....+f)=a{p Hog(trace(ds)) + m Hog(trace(Ag))} bits

Where a is some proportionality constant. Physically, as a result of this contraction along the depth H  will
resemble a rectangular box with four trapezoidal sides and tapered bottom. A Typical holograph for storing 64x64
frame images, requires about 128 megabytes. While the contraction reduces the sizeto 1.5 megabytes.

3.4 Reduction in Computation

Searchand Retrieval: Theholograph query isperformed by (10). If weconsider, right parenthetical computation
inthe order as shown in (12):

(le) *p) pxm) mXn) — nx
e g
The dimensions are shown over each element. Then, evaluation of (12) can be performed by (pg + mn +2pm)
multiplications, (pg +mn +2pm) additions, and (pg +mn) logarithm evaluation. For, a typical image pattern with
256x256 pixels, p =m, q =n, and aratio n/m = 8, it means approximately 2** multiplications and 2* logarithms. On

the other hand, the regular uncontracted holograph requires 4gn multiplications and 2gn additions. For the sametypical
case it means 2** multiplications and half as much additions.

Holographic L earning: Similar saving can be attained in the case of encoding too. If we consider asingle step
evaluation of equation-7 in the parenthetical order shown below:
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A singlestepiterationincluding the stimul us pattern transformati on requires2(mn + 2pq + 4pm) multiplications,
(mn +2pq +5pm) additions and (mn +2pq) logarithms. In contrast, the uncontracted holograph requires 8gqn multi-
plications and (6gn +2q) additions. For the typical case, the contracted case means approximately 3.5 x 2°° multipli-
cations and additions, and 3 x 2% logarithms. The uncontracted holograph requires 2* multiplications and 3 x 2%
additions.

As shown above, despite the additional input and output processing, the contracted holograph model requires
lessoverall computation both, in the enfolding and query process. The saving is approximately given by then/m ratio.
The computations can be performed with high degree of parallelism with pipelined stages. The matrix nature of the
computations makes the holographic assosiative model highly scalable of conventional high performance parallel
machines. The parallel execution time also reduces by n/m ratio.

4 Experiment

The feasibility of the contracted holograph has been demonstrate by implementing a contracted holographic
associative memory. Fig-1(a) shows the original image that was stored in the holograph. Fig-1(b) shows the retrieved
image from the holograph for 100% frame query. Fig-1(c) showstheretrieved pattern using query with 50% of the full
frame. Unlike most other associative memories, holograph has the unique capability to focus at any arbitrary region of
the query frame, with small degeneration of the retrieved pattern. Fig-2(a),(b) and (c) shows similar framesfor another



image stored in the same holograph. The 50% frame window is shown in Fig-5. The excitation of the holograph can
be seen at the distribution presented in Fig-4, which has 32 images encoded in it. The contraction mask set is shown
inFig-3.

Thefollowing table providesthe signal to noise (SNR) characteristics among these images. The loss only due
to transformation is characterized by the comparison between the original image and retransformed image (18.65 db).
Theloss due to holographic encoding is shown by the comparison between the retransformed and 100% frame based
retrieved images (31.37 db). The loss due to partial frame query is expressed by the comparison of 100% frame with
75% and 25% frame based recovered images (20.39 db and 16.62 db respectively). The table provides a comparative
picture of the trade-off, for which our methods provides a mechanism. The result of thistable correspondsto 64 times
contraction in holograph size, and almost 8 times faster encoding and search speed.

SNR Characteristics

SNR Retranformed Retrieved Image Retrieved Image Retrieved Image
between: Image (100% Frame) (75% Frame) 50% Frame
Origina 18.65 db 18.43 db 16.47 db 14.54db
Retranformed X 31.37 db 20.29 db 16.52 db
(100% Frame) X X 20.39db 16.62 db
5 Conclusion

The proposed work provides a formal mechanism to perform trade-off between size of space and quality of
space for holographic associative memory. As for other search problems, the reduction of search space also simulta-
neously reduces the search speed. The moreisthe sparseness of the pattern information, the lessisthe loss of quality
in storage due to this contraction and vice verse. Sutherland has previously proposed a method to increase the feature
space for dense patterns [ Suth90], however without any optimality consideration.

One of the principal significance of thiswork isto develop an effective means to construct reversible optimum
features for complex valued patterns. We have shown the process of constructing compressed holographs based on
autonomous learning of features from the pattern space. The features are not only optimum in MM SE reconstruction
sense, but al so warrants classification. Because, the m feature dimensions are sel ected in order of pattern variance along
each of them.
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