
Feature based Contraction
of Sparse Holographic Associative Memory1

Javed I. Khan and D. Y. Y. Yun

University of Hawaii at Manoa
Department of Electrical Engineering

Laboratories of Intelligent and Parallel Systems
491 Holmes Hall, 2450 Dole Street, Honolulu, HI-96822

javed@wiliki.eng.hawaii.edu

Abstract
The paper presents a scheme for reducing memory space of a holographic associative memory for content based

learning, searching and retrieval of sparse patterns. Holographic associative memory developed on the properties of
complex valued Riemann space is one of the most promising models of associative memory. It has demonstrated 10
to 100 times speedup than most other models of associative memories in learning pattern associations with nearly
arbitrary level of complexity. The correlation space of the sparse patterns, is also sparse in information, but repre-
sentationally dense. Therefore, holograph of sparse patterns (such as images) becomes extremely large. In this paper
we describe a holographic memory model which projects the sparse holograph on a reduced memory space along all
three of its dimensions by unsupervised learning of the stimulus and response patterns. The resulting holographic model
also simultaneously increases the encoding, searching and decoding speed.

1 Introduction
Associative computing is expected to play a critical role in the field of intelligent image data-base management.

The applications such as content addressable retrieval, query by example, indexing by features; such as color, texture,
shape, all these require some form of associative recollection.

Since the advancement of synoptic theory of signal transmission by McCulloch and Pitts (1943), and Hebb
(1949) a number of models of artificial associative memories have been developed to mimic the behavior of human
brain by researchers such as Marr (1969), Anderson (1989), Willshaw (1971), Kanerva (1988)and many others [Kane88,
Will89]. These pioneering models were able to reproduce some of the intriguing behaviors of human brain. Two of the
most serious concern with most of these associative memories are their capacity and difficulty in storing arbitrary
patterns. However, for image applications, the problem becomes more acute in terms of enormous physical memory
requirement. Very few work has been done to make the assosiative memory space efficient.

A typical image pattern generally consists of a large number of pixels, and by nature individually they carry
smallamountof significant information.As aconsequence, thecorrelation space of the imagepattern becomesphysically
large but sparse in information. The objective of our research is to find ways to extract useful information from this
sparseness of the correlation space and to contract the space of associative memory.

Our research is specifically aimed at a model of holographic associative memory proposed by Sutherland
[Suth90], which has demonstrated a major break through in speed and capacity. Experiments have revealed speedup
of factors 10 to 100 times compared to other paradigms [Souc92,p8]. Multiple pattern associations at nearly arbitrary
complexity, without hindered by the linear separability problem, can be enfolded with the holographic memory. Thus,
it challenges the principal two limitations of earlier models. The memory operates in complex number domain, in
contrast to most other models. The holographic memory itself can be considered as a 3-D volume. The first two
dimensions are the stimulus and response pattern elements. The 3rd dimension or the depth represents the bits required
to store each of the correlation element. In this paper we present a uniform technique based on the autonomous learning
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of patterns to contract the holograph along all three dimensions based on the sparseness analysis of the correlation
information. The next section presents a background on holographic associative memory. Section 3 presents the con-
traction model. Finally section 4 provides some performance results from a simulated holograph.

2 Background and Mathematical Basis

2.1 Bi-Modal Representation

A pattern S is a suit of stimulus elements in the form of . The individual pattern elements are

represented as a complex number, where the magnitude of the complex number is representative of the confidence in
the element and the phase of the complex number enumerates the content. Unlike the conventional representation
schemes, our model treats information as a bi-modal (confidence:content) notion. Thus a stimulus and response patterns
with respectively n and q elements are represented as:

The content of each element is transformed to the phase exponent through some suitable trans-

formation. A sigmoidal transformation can a generate uniform phase distribution if the stimulus elements are distributed
normally. is assigned a confidence value between 0 and 1.0.

2.2 Holographic Memory Model

Holograph stores a large number of stimulus and response pattern associations in the form of complex correlation
matrix. The encoding is performed by super-imposing individual correlations on the same holographic memory sub-
strate. Despite the superimposition, provided with a query stimulus, the holograph can regenerate the closest associated
response. An association is encoded as the correlation of the response and the transpose conjugate of the stimulus
patterns. (In this paper we will use a superscript T to denote the transpose and the bar to denote transpose).

All such (k) associations are enfolded by superimposing them in the holograph.

The learning equation (1a) has been improved to encode only that part of a new association that is new, instead
of the whole. The component of a new association which is already learned is not encoded. The following equation
forms the differential learning algorithm for the holograph which incorporates this modification.

The differential learning has demonstrate lower saturation and higher capacity of the holograph [Suth90]. To
associatively retrieve a pattern, a query pattern is convolved with the holograph for target response .

If the query is close to some priori encoded stimulus in the holograph then the target response resembles the

corresponding response pattern .

The underlying process can be explained through the recovery of a single response element, through (1a). Let
the subscripts i and j refer to the element index and t refers to the association index. According to (1a) and (2), the jth

element of the query response:

If is close to some priory encoded stimulus , then the above equation can be rewritten as:
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The phase of the first summation term here is exactly equally to the phase of . Because, the product

is always a scalar quantity. For symmetrically distributed associations, the second summation contributes as a random
walk in the two dimensional vector space, The length of this path grows very slowly with the square root of the number
of vectors. Thus, the resulting response phase closely resembles the phase of the correct response.

If both the stimulus and response patterns are identical, then holograph acts as a content addressable auto
associative memory. More extensive analysis of this holographic process can be found in [Suth90, KhYu94]. Now we
will concentrate on the reduction of physical space required by the holograph H, which is the key.

3 Dimension of the Holograph

For stimulus and response patterns respectively with n and q elements, corresponding holograph requires
complex correlations requiring a large number of physical memory locations. Our objective is to exploit the sparseness
of information content in the patterns and to reduce the physical memory space of the holograph. Our principal
decomposition strategy is given by the following modified form of (2):

Where, transformation projects the n-dimensional stimulus pattern is projected on an m-dimensional space,

and transformation projects the p-dimensional output of the holograph onto q-dimensional response pattern space.

The new holograph has dimension , where both .

3.1 Optimum Transformations and Feature Construction

The optimality criterion for the transformations is the faithful reconstruction of the patterns. Now we will
concentrate on the computation of the transformations, which can satisfy minimum mean square error (MMSE)
transformation criterion.

For a given sparse pattern space, the dense features are be selected from the feature space of the following
format, where each of the feature elements is a product of the original pattern elements, each raised to an exponent.

An infinite number of features can be constructed from this feature space for each unique set of exponents.
However, we will choose only such feature elements. So that the dense pattern will be of the form:

Where is the confidence of feature j, and is the content of feature j. This feature space is a generalization

of the higher order feature space previously proposed by Sutherland to attack the reverse problem of dense pattern
[Suth90], where the pattern space is small in comparison to the number of features present in the stimulus pattern. Such
situation arises in cases such as decoder problem, x-or problem etc.

The exponents , should be chosen to suit the MMSE optimum reconstruction criterion of the information
content. For each feature, there should be a set of such exponents corresponding to each of the pattern elements.
There should be such sets to construct the complete feature set . We will denote the exponents in the form of matrix

. Now, we would like to compute which will satisfy the criterion of optimum linear reconstruction.
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Let, the vector defines a vector with the exponents (phase components) of , and vector defines a vector
with the exponents (phase components) of . Then the following iterative equations provide the autonomous learning
equation to compute .

Where, is the learning constant for the encoder which is decreasing with time. Operator LT[] refers to the
lower triangularization. The reverse transformation is given by (5), which is symmetric to (4) and uses the transposed
form as its transformation matrix.

The following two theorems explain the mathematical basis of (4), (5) and (6).

Theorem 1: If D is assigned random values at time zero, then with probability 1.0 equation (5) will converge
and will approach to a transformation pair between planes. The pair ensures MMSE reconstruction
of the phase components (content) of the suit .

Proof: Using the bi-modal representation, a feature element can be re-written as:

Thus, the transformation (4) in the phase plane (content) can be written in the matrix form as:

is a linear combination of the individual pattern elements, where are the coefficients. The optimum

coefficients for linear reconstruction of the content of S can be found by determining the eigenvectors of the space
defined by the auto correlation matrix of the patterns. Let, the eigenvectors of Q are ordered in the
decreasing order of their corresponding eigenvalues. The patterns are spanned in an dimensional space. Then the
subspace spanned by the first m eigenvectors will retain maximum reconstruction information for the suit of for
a given m. Thus, it will allow reconstruction of the input suit Ss from Ys with minimum mean square error. Sanger
[Sang89] has proved for scalar case that the learning algorithm of (5) is doing exactly that. For, bounded magnitude of
the elements of , and decreasing , irrespective of the initial values, (7) converges in such a manner that the rows of

converges to the eigenvectors of in sorted order. Since, the matrix D is an eigenvector matrix, therefore, the reverse
transformation is given by transpose of D.

Theorem 2: The transformation pair specified by (4) and (6), using the transformation matrix computed
through (5) can also reconstructs the magnitude component (confidence) of the pattern suit .

Now, we will proof the reconstruction criterion for the magnitude component of S. The forward and reverse
transformations are respectively specified by (4) and (6), which can be re-written in the following forms:

Where, is the reconstructed pattern element. Expanding the right hand side of the reverse transformation,
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Since, rows of the matrix are the eigenvectors, therefore the product of its transpose with itself is an identity
matrix of size n.

Thus,

Thus, the above transformation pair also reconstructs the magnitude component of the patterns.

In fact, Sanger’s proof can be further generalized for complex valued numbers. The basic assumptions of Oja
[Oja83] and Ljung’s [Ljun77] theorems (which are the foundation of Sanger’s proof) are also valid for complex numbers.
Thus, an equation analogous to (5), where and are replaced by corresponding and vectors, can directly compute
the eigenvector matrix.

There are several other algorithms for computing multiple eigenvectors such as by Brockett (89), Karhunen &
Oja (82), Kuusela & Oja (82) [Oja83, Sang89]. However, the advantage of (5) is that it also sorts the eigenvectors, and
the computation in (5) can be performed using smaller final and intermediate memory.

3.2 Feature Based Associative Memory Model

The following set of equations provide the operational principle of the contracted holograph. First transformation
matrices, and are computed from the autonomous learning algorithm given by (5) using the stimulus and response

pattern suits. Then (9) is used to enfold the pattern associations onto the contracted holograph . The query into the
holograph is performed by (10).

In (9), is computed from (4), using . The transformations all are computed from

(4) using respectively.

3.3 Size of the Contracted Holograph

From the storage perspective, a holograph can be thought as a 3 dimensional volume. Where the first two
dimensions respectively represent the stimulus (n) and pattern (q) lengths. The depth dimension represents the number
of bits required to store each of the correlation elements. If b bits are used to encode each of the correlation element,
then the size of the original holograph is bits.

The proposed contraction method not only contracts the holograph in the first two dimensions, but also it can
be used to save space in the 3rd dimension. The eigenvalues for the auto-correlation matrices of stimulus and response
patterns can be computed by:
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Where, and are the vectors spanned by the phase components of stimulus and response patterns. are real
valued diagonal matrices. is expectation. Each of the elements in the diagonal represents the eigenvalue corresponding
to the eigenvectors arranged in . The eigenvalues of and correspond to the estimate of the variance of the

patternsalong thedimensions spannedby theircorresponding first m eigenvectors.Each of the feature contents, therefore
need not to be encoded with same number of bits. Each of them can be quantized according to their variance along
corresponding dimensions. One way of assignment is to allot bits proportional to the log of variance. In the holograph,
each of the correlation terms requires bits equal to the sum of the bits required by the component product terms.
Therefore, if are the bits assigned to the stimulus feature elements, and are the bits assigned to the

response feature elements, then the bits to quantize the entire holograph is:

Where a is some proportionality constant. Physically, as a result of this contraction along the depth will
resemble a rectangular box with four trapezoidal sides and tapered bottom. A Typical holograph for storing 64x64
frame images, requires about 128 megabytes. While the contraction reduces the size to 1.5 megabytes.

3.4 Reduction in Computation

Searchand Retrieval:Theholograph query isperformed by (10). If we consider, right parentheticalcomputation
in the order as shown in (12):

The dimensions are shown over each element. Then, evaluation of (12) can be performed by
multiplications, additions, and logarithm evaluation. For, a typical image pattern with
256x256 pixels, , and a ratio , it means approximately multiplications and logarithms. On
the other hand, the regular uncontracted holograph requires multiplications and additions. For the same typical
case it means multiplications and half as much additions.

Holographic Learning: Similar saving can be attained in the case of encoding too. If we consider a single step
evaluation of equation-7 in the parenthetical order shown below:

A single step iteration including the stimulus pattern transformation requires multiplications,
additions and logarithms. In contrast, the uncontracted holograph requires multi-

plications and additions. For the typical case, the contracted case means approximately multipli-
cations and additions, and logarithms. The uncontracted holograph requires multiplications and
additions.

As shown above, despite the additional input and output processing, the contracted holograph model requires
less overall computation both, in the enfolding and query process. The saving is approximately given by the ratio.
The computations can be performed with high degree of parallelism with pipelined stages. The matrix nature of the
computations makes the holographic assosiative model highly scalable of conventional high performance parallel
machines. The parallel execution time also reduces by ratio.

4 Experiment
The feasibility of the contracted holograph has been demonstrate by implementing a contracted holographic

associative memory. Fig-1(a) shows the original image that was stored in the holograph. Fig-1(b) shows the retrieved
image from the holograph for 100% frame query. Fig-1(c) shows the retrieved pattern using query with 50% of the full
frame. Unlike most other associative memories, holograph has the unique capability to focus at any arbitrary region of
the query frame, with small degeneration of the retrieved pattern. Fig-2(a),(b) and (c) shows similar frames for another
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image stored in the same holograph. The 50% frame window is shown in Fig-5. The excitation of the holograph can
be seen at the distribution presented in Fig-4, which has 32 images encoded in it. The contraction mask set is shown
in Fig-3.

The following table provides the signal to noise (SNR) characteristics among these images. The loss only due
to transformation is characterized by the comparison between the original image and retransformed image (18.65 db).
The loss due to holographic encoding is shown by the comparison between the retransformed and 100% frame based
retrieved images (31.37 db). The loss due to partial frame query is expressed by the comparison of 100% frame with
75% and 25% frame based recovered images (20.39 db and 16.62 db respectively). The table provides a comparative
picture of the trade-off, for which our methods provides a mechanism. The result of this table corresponds to 64 times
contraction in holograph size, and almost 8 times faster encoding and search speed.

SNR Characteristics

SNR Retranformed Retrieved Image Retrieved Image Retrieved Image
between: Image (100% Frame) (75% Frame) 50% Frame

Original 18.65 db 18.43 db 16.47 db 14.54 db

Retranformed x 31.37 db 20.29 db 16.52 db

(100% Frame) x x 20.39 db 16.62 db

5 Conclusion
The proposed work provides a formal mechanism to perform trade-off between size of space and quality of

space for holographic associative memory. As for other search problems, the reduction of search space also simulta-
neously reduces the search speed. The more is the sparseness of the pattern information, the less is the loss of quality
in storage due to this contraction and vice verse. Sutherland has previously proposed a method to increase the feature
space for dense patterns [Suth90], however without any optimality consideration.

One of the principal significance of this work is to develop an effective means to construct reversible optimum
features for complex valued patterns. We have shown the process of constructing compressed holographs based on
autonomous learning of features from the pattern space. The features are not only optimum in MMSE reconstruction
sense, but also warrants classification. Because, the m feature dimensions are selected in order of pattern variance along
each of them.
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